Article contents
Comparison of the backbone dynamics of the apo- and holo-carboxy-terminal domain of the biotin carboxyl carrier subunit of Escherichia coli acetyl-CoA carboxylase
Published online by Cambridge University Press: 01 February 1999
Abstract
The biotin carboxyl carrier protein (BCCP) is a subunit of acetyl-CoA carboxylase, a biotin-dependent enzyme that catalyzes the first committed step of fatty acid biosynthesis. In its functional cycle, this protein engages in heterologous protein–protein interactions with three distinct partners, depending on its state of post-translational modification. Apo-BCCP interacts specifically with the biotin holoenzyme synthetase, BirA, which results in the post-translational attachment of biotin to a single lysine residue on BCCP. Holo-BCCP then interacts with the biotin carboxylase subunit of acetyl-CoA carboxylase, which leads to the addition of the carboxylate group of bicarbonate to biotin. Finally, the carboxy-biotinylated form of BCCP interacts with transcarboxylase in the transfer of the carboxylate to acetyl-CoA to form malonyl-CoA. The determinants of protein–protein interaction specificity in this system are unknown. The NMR solution structure of the unbiotinylated form of an 87 residue C-terminal domain fragment (residue 70–156) of BCCP (holoBCCP87) and the crystal structure of the biotinylated form of a C-terminal fragment (residue 77–156) of BCCP from Escherichia coli acetyl-CoA carboxylase have previously been determined. Comparative analysis of these structures provided evidence for small, localized conformational changes in the biotin-binding region upon biotinylation of the protein. These structural changes may be important for regulating specific protein–protein interactions. Since the dynamic properties of proteins are correlated with local structural environments, we have determined the relaxation parameters of the backbone 15N nuclear spins of holoBCCP87, and compared these with the data obtained for the apo protein. The results indicate that upon biotinylation, the inherent mobility of the biotin-binding region and the protruding thumb, with which the biotin group interacts in the holo protein, are significantly reduced.
Keywords
- Type
- Research Article
- Information
- Copyright
- © 1999 The Protein Society
- 26
- Cited by