Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T23:59:12.776Z Has data issue: false hasContentIssue false

Early Phase Trials of Minocycline in Amyotrophic Lateral Sclerosis

Published online by Cambridge University Press:  15 February 2006

Paul H. Gordon
Affiliation:
Department of Neurology, Columbia University, NY, USA; Email: [email protected]
Joseph Choi
Affiliation:
Department of Neurology, Columbia University, NY, USA; Email: [email protected]
Dan H. Moore
Affiliation:
Department of Biostatistics, California Pacific Medical Center, CA, USA; Email: [email protected]
Robert G. Miller
Affiliation:
Department of Neurology, California Pacific Medical Center, CA, USA; Email: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almer, G., Guegan, C., Teismann, P., Naini, A., et al. (2001). Increased expression of the proinflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Annals of Neurology, 49, 176185.Google Scholar
Arnold, P.M., Ameenuddin, S., Citron, B.A., SantaCruz, K.S., Qin, F., & Festoff, B.W. (2001). Systemic Administration of Minocycline Improves Functional Recovery and Morphometric Analysis After Spinal Cord Injury (SCI). San Diego, CA: Society for Neuroscience, November 2001 [Abstract 769.4].
Barneoud, P., & Curet, O. (2000). Beneficial effects of lysine acetylsalicylate, a soluble salt of aspirin, on motor performance in a transgenic model of amyotrophic lateral sclerosis. Experimental Neurology, 155, 243251.Google Scholar
Bradley, W.G., Anderson, F., Gowda, N., Miller, R.G., & ALS CARE Study Group. (2004). Changes in the management of ALS since the publication of the AAN ALS practice parameter 1999. Amyotrophic Lateral Sclerosis and Other Motor Neuronal Disorders, 5, 240244.Google Scholar
Brooks, B.R., Miller, R.G., Swash, M., Munsat, T.L., for the world federation of neurology research group on motor neuron diseases. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuronal Disorders, 557560.Google Scholar
Chen, M., Ona, V.O., Li, M., Ferrante, R.J., Fink, K.B., Zhu, S., Bian, J., et al. (2000). Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nature Medicine, 6, 797801.Google Scholar
Diguet, E., Fernagut, P.O., Wei, X., Du, Y., et al. (2004). Deleterious effects of minocycline in animal models of Parkinson disease and Huntington disease. European Journal of Neuroscience, 19, 32663276.Google Scholar
Drachman, D.B., Frank, K., Dykes-Hoberg, M., Teismann, P., Almer, G., Przedborski, S., & Rothstein, J.D. (2002). Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Annals of Neurology, 52, 771778.Google Scholar
Du, Y., Ma, Z., Lin, S., Dodel, R.C., Goa, F., Bales, K.R., et al. (2001). Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proceedings of the National Academy of Science, 98, 1466914674.Google Scholar
Eichenfield, A.H. (1999). Minocycline and autoimmunity. Current Opinion in Pediatrics, 11, 447456.Google Scholar
Friedlander, R.M., Brown, R.H., Gagliardini, V., Wang, J., & Yuan, J. (1997). Inhibition of ICE slows amyotrophic lateral sclerosis in mice. Nature, 388, 31.Google Scholar
Gordon, P.H., Moore, D.H., Gelinas, D.F., Qualls, C., Meister, M.E., Werner, J., Mendoza, M., Mass, J., Kushner, G., & Miller, R.G. (2004). Placebo Controlled Phase I/II studies of minocycline in amyotrophic lateral sclerosis. Neurology, 62, 18451847.Google Scholar
Goulden, V., Glass, D., & Cunliffe, W.J. (1996). Safety of long-term high-dose minocycline in the treatment of acne. British Journal of Dermatology, 134, 693695.Google Scholar
Guiliani, F., Fu, S.A., Metz, L.M., & Yong, V.W. (2005a). Effective combination of minocycline and interferon-beta in a model of multiple sclerosis. Journal of Neuroimmunology, 165, 8391.Google Scholar
Guiliani, F., Metz, L.M., Wilson, T., Fan, Y., Bar-Or, A., & Yong, V.W. (2005b). Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. Journal of Neuroimmunology, 158, 213221.Google Scholar
Hirano, A. (1991). Cytopathology in amyotrophic lateral sclerosis. Advances in Neurology, 56, 91101.Google Scholar
Horstmann, S., Kahle, P.J., & Borasio, G.D. (1998). Inhibitors of p38 mitogen-activated protein kinase promote neuronal survival in vitro. Journal of Neuroscience Research, 52, 483490.Google Scholar
Hunter, C.L., Bachman, D., & Granholm, A.C. (2004). Minocycline prevents cholinergic loss in a mouse model of Down's syndrome. Annals of Neurology, 56, 675688.Google Scholar
Johnson, B.A., & Nunley, J.R. (2000). Topical therapy for acne vulgaris. Postgraduation Medicine, 107, 6980.Google Scholar
Kostic, V., Jackson-Lewis, V., de Bilbao, F., Dubois-Dauphin, M., & Przedborski, S. (1997). Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science, 277, 559562.Google Scholar
Kriz, J., Gowing, G., & Julien, J.P. (2003). Efficient three-drug cocktail for disease induced by mutant superoxide dismutase. Annals of Neurology, 53, 429436.Google Scholar
Kriz, J., Nguyen, M., & Julien, J. (2002). Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiological Disease, 10, 268.Google Scholar
Lacomblez, L., Bensimon, G., Leigh, P.N., Guillet, P., & Meininger, V. (1996). Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet, 347, 14251431.Google Scholar
Langevitz, P., Livneh, A., Bank, I., & Pras, M. (2000). Benefits and risks of minocycline in rheumatoid arthritis. Drug Safety, 22, 405414.Google Scholar
Li, M., Ona, V.O., Guegan, C., Chen, M., Jackson-Lewis, V., Andrews, L.J., Olszewski, A.J., et al. (2000). Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science, 288, 335339.Google Scholar
Martin, L.J. (1999). Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. Journal of Neuropathology Experimental Neurology, 58, 459471.Google Scholar
Martin, L.J., Price, A.C., Kaiser, A., Shaikh, A.Y., & Liu, Z. (2000). Mechanisms for neuronal degeneration in amyotrophic lateral sclerosis and in models of motor neuron death. International Journal of Molecular Medicine, 5, 313.Google Scholar
Migheli, A., Piva, R., Atzori, C., Troost, D., & Schiffer, D. (1997). c-Jun, JNK/SAPk kinases and transcription factor NF-kB are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurology, 56, 13141322.Google Scholar
Miller, R.G., Rosenberg, J.A., Gelinas, D.F., Mitsumoto, H., et al. (1999). Practice parameter: the care of the patient with amyotrophic lateral sclerosis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology: ALS Practice Parameters Task Force. Neurology, 52, 13111323.Google Scholar
Mota, M., Reeder, M., Chernoff, J., & Bazenet, C.E. (2001). Evidence for a role of mixed lineage kinases in neuronal apoptosis. Journal of Neuroscience, 21, 49494957.Google Scholar
O'Dell, J.R., Haire, C.E., Palmer, et al. (1997). Treatment of early rheumatoid arthritis with minocycline or placebo: results of a randomized, double blind, placebo-controlled trial. Arthritis Rheumatology, 40, 842848.Google Scholar
Patel, K., Chishire, D., & Vance, A. (1998). Oral and systemic effects of prolonged minocycline therapy. British Dental Journal, 185, 560562.Google Scholar
Pi, R., Li, W., Lee, N.T., Chan, H.H., et al. (2004). Minocycline prevents glutamate-induced apoptosis of cerebellar granule neurons by differential regulation of p38 and Akt pathways. Journal of Neurochemistry, 91, 12191230.Google Scholar
Popovic, N., Schubart, A., Goetz, B.D., Zhang, S.C., Linington, C., & Duncan, I.D. (2002). Inhibition of autoimmune encephalomyelitis by a tetracycline. Annals of Neurology, 52, 215223.Google Scholar
Rothstein, J.D., Martin, L.J., & Kuncl, R.W. (1992). Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. New England Journal of Medicine, 236, 14641468.Google Scholar
Rowland, L.P., & Shneider, N.A. (2001). Amyotrophic lateral sclerosis. New England Journal of Medicine, 344, 16881700.Google Scholar
Ryu, J.K., Franciosi, S., Sattayaprasert, P., Kim, S.U., & McLarnon, J.G. (2004). Minocycline inhibits neuronal death and glial activation induced by beta-amyloid peptide in rat hippocampus. Glia, 48, 8590.Google Scholar
Schiffer, D., Cordera, S., Cavalla, P., & Migheli, A. (1996). Reactive astro-gliosis of the spinal cord in amyotrophic lateral sclerosis. Journal of Neurological Science, 139, 2733.Google Scholar
Smilack, J.D. (1999). The Tetracyclines. Mayo Clinical Proceedings, 74, 727729.Google Scholar
Stone, M., Fortin, P.R., Pacheco-Tena, C., & Inman, R.D. (2003). Should tetracycline treatment be used more extensively for rheumatoid arthritis? Metaanalysis demonstrates clinical benefit with reduction in disease activity. Journal of Rheumatology, 30, 21122122.Google Scholar
Tikka, T.M., Vartiainen, N.E., Goldsteins, G., Oja, S.S., Andersen, P.M., Marklund, S.L., & Koistinaho, J. (2002). Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain, 125, 722731.Google Scholar
Van Den Bosch, L., Tillkin, P., Lemmens, G., & Robberecht, W. (2002). Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport, 13, 10671070.Google Scholar
Wiedemann, F., Winkler, K., Juznetsoc, A., et al. (1998). Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. Journal of Neurological Science, 156, 6572.Google Scholar
Yrjanheikki, J., Tikka, T., Keinanen, R., Goldsteins, G., Chan, P.H., & Koistinaho, J. (1999). A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proceedings of the National Academy of Science, 96, 1349613500.Google Scholar
Zhang, W., Narayanan, M., & Friedlander, R.M. (2003). Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Annals of Neurology, 53, 267270.Google Scholar
Zhu, S., Stravrovskaya, I.G., Drozda, M., et al. (2002). Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature, 417, 7478.Google Scholar
Zink, M.C., Uhrlaub, J., DeWitt, J., Voelker, T., Bullock, B., et al. (2005). Neuroprotective and anti-human immunodeficiency virus activity of minocycline. Journal of the American Medical Association, 293, 20032011.Google Scholar