No CrossRef data available.
Published online by Cambridge University Press: 15 September 2014
The geometry associated with the double binary (2, 2) form has, previously, been exhaustively treated by Mr Kasner and Professor Turnbull by regarding the form as representing the twisted quartic: namely, the complete intersection of a sphere (more generally a quadric) and a quadric, and projectively as the bicircular quartic. A full list of references will be found in the paper of Professor Turnbull in the Proceedings of the Royal Society of Edinburgh, xliv (1924), 23–50. More recently Dr Vaidyanathaswami has investigated further properties of the cyclic, using a new canonical form for the (2, 2) curve.
page 264 note * Proc. London Math. Soc., 2, 24 (1925), 83–102Google Scholar.
page 264 note † Grace and Young, Algebra of Invariants, p. 306.
page 264 note ‡ Battaglini, , Giorn. di Math., xx, 1882Google Scholar.
page 266 note * Loc. cit.
page 266 note † Turnbull, loc. cit.
page 268 note * Turnbull, loc. cit.
page 269 note * Turnbull, loc. cit.
page 271 note * Grace and Young, Algebra of Invariants, p. 311.
page 272 note * Grace and Young, loc. cit.
page 272 note † Meyer, Apolaritat und rationalen Curven, pp. 97, 98.
page 272 note ‡ Meyer, loc. cit.
page 273 note * Saddler, W., Proc. Edin. Math. Soc., 1926Google Scholar, Part 9.
page 274 note * Turnbull, loc. cit.
page 276 note * Clebsch-Gordon, , Math. Annalen, vol. i, p. 359Google Scholar.
page 277 note * Grace and Young, loc. cit., p. 286.
page 280 note * Stephanos, Mémoires de L'Institut de France, vol. xxvii, 2nd Series.
page 280 note † Vaidyanathaswami, Proc. Lond. Math. Soc. (2), vol. xxiii, p. 317.
page 281 note * Ciamberlini, Battaglini, vol. xxiv.