Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T22:39:19.411Z Has data issue: false hasContentIssue false

XVII.—The Energy Levels of a Rotating Vibrator

Published online by Cambridge University Press:  15 September 2014

Ian Sandeman
Affiliation:
University of St Andrews
Get access

Extract

The energy levels of a rotating vibrator have been calculated by the late J. L. Dunham (1932). The theory of the rotating vibrator is important, because it provides a method for direct quantitative study of molecular structure from the band spectra of diatomic molecules. The purpose of this paper is to extend Dunham's results and to express them in a form more convenient for numerical calculation.

Type
Proceedings
Copyright
Copyright © Royal Society of Edinburgh 1940

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Beutler, H., 1934. “Die Dissoziationswärme des Wasserstoffmoleküls H2, aus einen neuen ultravioletten Resonanzbandenzug bestimmt,” Zeits. Phys., vol. xxvii, p. 287.Google Scholar
Davidson, P. M., 1932. “Eigenfunctions for Calculating Electronic Vibrational Intensities,” Proc. Roy. Soc., A, vol. cxxxv, p. 459.Google Scholar
Dunham, J. L., 1932. “The Wentzel-Brillouin-Kramers Method of Solving the Wave Equation,” Phys. Rev., vol. xli, p. 713CrossRefGoogle Scholar
Dunham, J. L., 1932. “The Energy Levels of a Rotating Vibrator,” Phys. Rev., vol. xli, p. 721.CrossRefGoogle Scholar
Fues, E., 1926. “Das Eigenschwingungsspektrum zweiatomiger Moleküle in der Undulationsmechanik,” Ann. Phys., Leipzig, vol. lxxx, p. 367.CrossRefGoogle Scholar
Jevons, W., 1932. “Report on Band-spectra of Diatomic Molecules,” Cambridge University Press.Google Scholar
Kratzer, K., 1922. “Die Gesetzmässigkeit der Bandensysteme,” Ann. Phys., Leipzig, vol. lxvii, p. 127.CrossRefGoogle Scholar
Lotmar, W., 1935. “Zur Darstellung des Potentialverlaufs bei zweiatomigen Molekülen,” Zeits. Phys., vol. xciii, p. 528.CrossRefGoogle Scholar
Morse, P. M., 1929. “Diatomic Molecules according to the Wave Mechanics. II. Vibrational Levels,” Phys. Rev., vol. xxxiv, p. 57.CrossRefGoogle Scholar