No CrossRef data available.
Published online by Cambridge University Press: 15 September 2014
In his original paper on the theory of complex spectra Slater (1929) calculated, as one of his examples, the relative positions of the multiplets 3P, 1D, 1S, arising from a configuration of two equivalent p electrons p2. The intervals between these multiplets, in the order written, were found to be in the ratio of 2:3. The same result was shown to hold for p4. Slater's method depends on setting up wave-functions for the atom by combining suitably the wave-functions of single electrons in a central field. With these atomic wave-functions the mean values of the electrostatic energy are calculated for the various multiplets. These mean values involve integration over angular co-ordinates, which can be performed, as well as integrations containing the unknown radial functions, which appear as parameters in the final result. The same method was subsequently applied (Condon and Shortley, 1931) to the configurations p2s, p4s, and extended (Johnson, 1932) to include in addition to the electrostatic energy the energy of the magnetic interaction between the orbits and spins, with which Slater was not concerned.