Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T01:17:05.240Z Has data issue: false hasContentIssue false

XIII.—Tests of Carcinogenic Substances in Relation to the Production of Mutations in Drosophila melanogaster

Published online by Cambridge University Press:  15 September 2014

Charlotte Auerbach
Affiliation:
Institute of Animal Genetics, University of Edinburgh
Get access

Extract

The theory has often been put forward that cancer is a somatic mutation. The changes which differentiate the cancerous cell from the normal are reproduced in many or all of the cells derived from the original malignant cell, i.e. they show the properties by which we define a mutation. Thus, to a geneticist, the possibility which most readily suggests itself is (1) that of a mutation in the genetic material of the somatic cell. Other possible mechanisms that might simulate the results of (1) are (2a) the introduction into the cell of a malignant virus; (2b) the “activation” of some such virus pre-existing in the cell in an inactive state, a situation which would imply mutation in the virus since the change becomes reproduced; (3) the production of some autocatalytic substance other than gene or virus, inducing malignant changes in the cell which contains a certain amount of it.

Type
Proceedings
Copyright
Copyright © Royal Society of Edinburgh 1940

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Altenburg, E., 1933. “The production of mutations by ultra-violet light,” Science, vol. lxxviii, p. 587.CrossRefGoogle Scholar
Caspersson, T., 1936. “Über den chemischen Aufbau der Strukturen des Zellkernes,” Skand. Arch. Physiol., Suppl. Nr. 8, vol. lxxiii, pp. 1151.Google Scholar
Curtis, M. R., Dunning, W. F., and Bullock, F. D., 1933. “Is malignancy due to a process analogous to somatic mutation?Science, vol. lxxvii, pp.175176.CrossRefGoogle Scholar
Dunning, W. F., Curtis, M. R., and Bullock, F. D., 1937. “The respective rôles of heredity and somatic mutation in the origin of malignancy,Int. Congr. against Cancer, vol. ii, pp. 138140.Google Scholar
Ephrussi, B., and Beadle, G. W., 1936. “A technique of transplantation for Drosophila,” Amer. Nat., vol. lxx, pp. 218225.CrossRefGoogle Scholar
Mackenzie, K., and Muller, H. J. (in press). “Mutation effects of ultraviolet light in Drosophila.”Google Scholar
Muller, H. J., 1926. “The gene as the basis of life,Proc. 4th Int. Congr. Plant Sci. (Ithaca), vol. i, pp. 897921 (1929).Google Scholar
Muller, H. J., 1927. “Artificial transmutation of the gene,Science, vol. lxvi, pp. 8487.CrossRefGoogle Scholar
Muller, H. J., 1937. “The biological effects of radiation, with especial reference to mutation,” Act. Sci. Industr., No. 725, Réun. int. Phys. Chim. Biol., viii, pp. 477494.Google Scholar
Muller, H. J., and Mackenzie, K., 1939. “Discriminatory effect of ultra-violet rays on mutation in Drosophila,” Nature, vol. cxliii, pp. 8384.CrossRefGoogle Scholar
Navashin, M., 1933. “Altern der Samen als Ursache von Chromosomenmutationen,Planta, vol. xx, pp. 233243.Google Scholar
Noethling, W., and Stubbe, H., 1934. “Untersuchungen über experimentelle Auslösung von Mutationen bei Antirrhinum majus, V. (Die Auslösung von Genmutationen nach Bestrahlung reifer männlicher Gonen mit Licht),Zeits. indukt. Abst. Vererb. Lehre, vol. lxvii, pp. 152172.Google Scholar
Sacharov, V. V., 1938. “On the specificity of the action of factors of mutation,” Biol. Ž., vol. vii, pp. 595618.Google Scholar
Stadler, L. J., and Sprague, G. F., 1936. “Genetic effects of ultra-violet radiation in maize,” Proc. Nat. Acad. Sci. Wash., vol. xxii, pp. 572591.CrossRefGoogle Scholar
Stadler, L. J., and Uber, F. M., 1938. “Preliminary data on genetic effects of monochromatic ultra-violet radiation in maize,” Genetics, vol. xxiii, p. 171.Google Scholar
Strong, L. C., 1926. “Changes in the reaction potential of a transplantable tumour,” Journ. Exp. Med., vol. xliii, pp. 713724.CrossRefGoogle Scholar
Stubbe, H., 1935. “Samenalter und Genmutabilität bei Antirrhinum majus L.,” Biol. Zbl., vol. lv, pp. 209215.Google Scholar
Stubbe, H., and Noethling, W., 1937. “Untersuchungen über experimentelle Auslösung von Mutationen bei Antirrhinum majus, VI. (Die Auslösung von Genmutationen durch kurzwelliges Ultra-violet),” Zeits. indukt. Abst. Vererb. Lehre, vol. lxxii, pp. 378386.Google Scholar