Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T09:46:23.805Z Has data issue: false hasContentIssue false

VII.—The Theory of Continuants from 1900 to 1920

Published online by Cambridge University Press:  15 September 2014

Get access

Extract

The number of writings on continuants belonging to the twenty-year period now reached is 44, being 15 more than for the immediately preceding period 1880–1900. The period bears also three other marks which serve to give it some little additional distinction, (1) the exceptionally full consideration given to the subject of factorisation (factorisation of continuants), (2) the first appearance of an entirely fresh form for special study, the “block continuant” of Simandl, (3) the fact that one of the said 44 writings is a text-book of very considerable extent devoted exclusively to continuants and continued fractions.

Type
Proceedings
Copyright
Copyright © Royal Society of Edinburgh 1927

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographical List

1872. Bachmann, P.“Zur Theorie der Kettenbruchähnlichen Algorithmen,” Crelle's Journ., lxxv, pp. 2534.Google Scholar
1889. Pincherle, S.“Di un' estensione dell algoritmo delle frazioni continue,” Ricend. … Ist. Lombardo, (2) xxii, pp. 555558.Google Scholar
1890. Pincherle, S.“Saggio di una generalizzazione delle frazioni continue algebriche,” Mem. … Accad. … Bologna, (4) x, pp. 513538.Google Scholar
1891. Pincherle, S.“Sulla generalizzazione delle frazioni continue algebriche,” Annali di Mat. …, (2) xix, pp. 7595.CrossRefGoogle Scholar
1891. Bortolotti, E.Sui sistemi ricorrenti del 3° ordine ed in particolare sui sistemi periodici,” Rendic. del Circolo Mat. (Palermo), v, pp. 129151.CrossRefGoogle Scholar
1897. Meyer, Fr.“Zur Theorie der Kettenbruchähnlichen Algorithmen,” Sitzungsb. … Ges. zu Königsberg, xxxviii, pp. 5766.Google Scholar
1903. Moritz, R. E.“On the representation of numbers as quotients of sums and differences of perfect squares,” Univ. Studies (Lincoln, Nebr.), iii, pp. 355369.Google Scholar
1910. Nörlund, N. E.“Sur les fractions continues d'interpolation,” Bull. … Acad. Roy. de Danemark, An. 1910, pp. 5768.Google Scholar