Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T23:25:06.329Z Has data issue: false hasContentIssue false

IX.—Gynandromorphism and Lateral Asymmetry in Birds

Published online by Cambridge University Press:  15 September 2014

F. A. E. Crew
Affiliation:
Institute of Animal Genetics, University of Edinburgh
S. S. Munro
Affiliation:
Institute of Animal Genetics, University of Edinburgh
Get access

Extract

Shortly after Juhn, Faulkner and Gustavson (1931) had shown that natural differentials in the growth‐rate of individual feathers on one and the same fowl determined, in part, the threshold of their response to œstrin, the faster the growth‐rate the greater being the amount of œstrin required to produce female feathering, Lillie (1931) extended their conclusions to a re‐examination of the cases of lateral gynandromorphism in birds recorded in the literature up to that time. He pointed out that this condition seemed always to be associated with lateral size asymmetry, and argued therefore that, since the male side was the larger and presumably the faster growing, to account for lateral gynandromorphism it was necessary only to postulate that the ovary of the bird should be malfunctioning, producing a sub‐normal amount of œstrin, sufficient to evoke henny‐feathering on the smaller, more slowly growing side, but insufficient to do so on the larger, faster growing side.

Type
Proceedings
Copyright
Copyright © Royal Society of Edinburgh 1939

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Bond, C. J., 1913. “On a case of unilateral development of secondary male characters in a pheasant, with remarks on the influence of hormones in the production of secondary sex characters,” Journ. Genet., vol. iii, pp. 205216.Google Scholar
Boring, A. M., and Pearl, R., 1918. “Sex Studies. XI. Hermophroditic birds,” Journ. Exp. Zool., vol. xxv, pp. 148.CrossRefGoogle Scholar
Bridges, C. B., 1932. “The genetics of sex in Drosophila,” Chap. III in Sex and Internal Secretions, Williams and Wilkins, Baltimore.Google Scholar
Crew, F. A. E., 1928. “A case of lateral asymmetry in the domestic fowl,” Journ. Genet., vol. xx, pp. 179186.CrossRefGoogle Scholar
Crew, F. A. E., 1932. “A case of leg‐colour asymmetry in the fowl,” Journ. Genet., vol. xxv, pp. 359365.Google Scholar
Crew, F. A. E., and Lamy, R., 1935. “Autosomal colour mosaics in the budgerigar,” Journ. Genet., vol. xxx, pp. 233241.CrossRefGoogle Scholar
Danforth, C. H., 1937 a. “An experimental study of plumage in Reeves pheasants,” Journ. Exp. Zool., vol. lxxvii, pp. 111, 1937.CrossRefGoogle Scholar
Danforth, C. H., 1937 b. “Artificial gynandromorphism and plumage in Phasianus,” Journ. Genet., vol. xxxiv, pp. 497506.CrossRefGoogle Scholar
Danforth, C. H., and Price, J. B., 1935. “Failure of theelin and thyroxin to affect plumage and eye‐colour of the blackbird,” Proc. Soc. Exp. Biol., N. Y., vol. xxxii, pp. 675678.CrossRefGoogle Scholar
Dantchakoff, V., 1936. “Réalisation du sexe à volonté par inductions hormonales. I. Inversion du sexe dans un embryon génétiquement mâle,” Bull. biol., vol. lxx, p. 242.Google Scholar
Domm, L. V., 1927. “New experiments on ovariotomy and the problem of sex inversion in the fowl,” Journ. Exp. Zool., vol. xlvii, pp. 31173.CrossRefGoogle Scholar
Domm, L. V., 1929. “Spermatogenesis following early ovariotomy in the Brown Leghorn fowl,” Proc. Soc. Exp. Biol., N.Y., vol. xxvi, pp. 338341.CrossRefGoogle Scholar
Gray, J. C., 1937. “The anatomy of the male genital ducts in the fowl,” Journ. Morphol., vol. lx, pp. 393406.CrossRefGoogle Scholar
Greenwood, A. W., and Blyth, J. S. S., 1930. “The results of testicular transplantation in Brown Leghorn hens,” Proc. Roy. Soc., B, vol. cvi, pp. 189202.Google Scholar
Hartman, C. G., and Hamilton, W. F., 1922. “Case of true hermaphroditism in the fowl, with remarks upon secondary sex characters,” Journ. Exp. Zool., vol. xxxvi, pp. 185199.Google Scholar
Hutt, F. B., 1929 a. “A note on Lambert's mosaic in the fowl,” Journ. Hered., vol. xx, pp. 323324.CrossRefGoogle Scholar
Hutt, F. B., 1929 b. “Sex dimorphism and variability in the appendicular skeleton of the Leghorn fowl,” Poult. Sci., vol. viii, pp. 202218.CrossRefGoogle Scholar
Hutt, F. B., 1937. “Gynandromorphism in the fowl,” Poult. Sci., vol. xvi, p. 354.Google Scholar
Huxley, J. S., and Bond, C. J., 1934. “A case of gynandromorphic plumage in a pheasant re‐examined in the light of Lillie's hypothesis of hormone threshold,” Journ. Genet., vol. xxix, pp. 5160.CrossRefGoogle Scholar
Juhn, M., Faulkner, G. H., and Gustavson, R. G., 1931. “The correlation of rates of growth and hormone threshold in the feathers of fowls,” Journ. Exp. Zool., vol. lviii, pp. 69112.CrossRefGoogle Scholar
Keck, W. N., 1934. “The control of the secondary sex characters, Passer domesticus (Linnœus),” Journ. Exp. Zool., vol. lxvii, pp. 315347.CrossRefGoogle Scholar
Knox, C. W., 1931. “Colour chimeras in the domestic fowl,” Journ. Hered., vol. xxii, pp. 133134.CrossRefGoogle Scholar
Leonard, S. L., Meyer, R. K., and Hisaw, F. L., 1931. “The effect of œstrin on development of the ovary in immature female rats,” Endoc., vol. xv, pp. 1724.CrossRefGoogle Scholar
Lillie, F. R., 1931. “Bilateral gynandromorphism and lateral hemihypertrophy in birds,” Science, vol. lxxiv, pp. 387390.CrossRefGoogle Scholar
Macklin, M. T., 1923. “A description of material from a gynandromorph fowl,” Journ. Exp. Zool., vol. xxxviii, pp. 355375.CrossRefGoogle Scholar
Moore, C. R., 1931. “A critique of sex‐hormone antagonism,” Proc. II Int. Cong. Sex Research, London, p. 293.Google Scholar
Moore, C. R., and Price, D., 1932. “Gonad hormone functions and the reciprocal influence between gonads and hypophysis with its bearing on the problem of sex‐hormone antagonism,” Amer. Journ. Anal., vol. 1, pp. 1371.CrossRefGoogle Scholar
Morgan, T. H., and Bridges, C. B., 1919. “The origin of gynandromorphs,” Carnegie Inst., Wash., publication no. 278, pp. 1122.Google Scholar
Parkes, A. S., 1937. Personal communication. See also “Effective absorption of hormones,” Brit. Med. Journ., Feb. 19, 1938, vol. i, p. 371.Google Scholar
Roberts, E., and Quisenberry, J. H., 1935. “A Brahma‐Plymouth Rock mosaic,” Journ. Hered., vol. xxvi, pp. 1114.CrossRefGoogle Scholar
Taylor, L. W., 1932. “Inheritance of spangling in the domestic fowl,” Journ. Genet., vol. xxvi, pp. 385394.Google Scholar
Vecchi, A., 1936. “Un caso di ginandromorfismo bipartito con mosaico somatico nel pollo,” Arch. Zool. Ital., vol. xxiii, pp. 377396.Google Scholar
Willier, B. H., Gallagher, T. F., and Koch, F. C., 1937. “The modification of sex development in the chick embryo by male and female sex hormones,” Physiol. Zool., vol. x, pp. 101102.CrossRefGoogle Scholar
Wolff, E., and Ginglinger, A., 1935. “Sur la production expérimentale d'intersexués par l'injection de folliculine à l'embryon de Poulet,” C.R. Acad. Sci., Paris, vol. cc, p. 2118.Google Scholar
Zawadowsky, M. M., 1926. “Materiale zur Analyse des Gynandromorphismus. I. Kastration der Finken und Gimpel,” Arch. Entw. Mech. Org., vol. cviii, pp. 563571.CrossRefGoogle Scholar