Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-06T10:10:37.414Z Has data issue: false hasContentIssue false

Action and phylogeny of antheridiogens

Published online by Cambridge University Press:  05 December 2011

H. Schraudolf
Affiliation:
Abt. Allgemeine Botanik, Universität Ulm, Oberer Eselsberg, D-7900 Ulm (Donan), West Germany
Get access

Synopsis

Evolution of new forms of organisms must be accompanied by evolution of the informational processes which regulate the development of these new forms. During plant phylogeny, products of metabolism have become phytohormones through the evolution of receptor molecules. Although nothing is known about these receptor molecules, it is suggested that the schizaeaceous ferns are the most primitive group in which a gibberellin-like substance acts as a signal for morphogenesis, and that their antheridiogen pheromones, which stimulate antheridium formation and spore germination, are the ancestors of the gibberellin hormones which influence seed plant development. Chemical and biological evidence for this suggestion is discussed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bargmann, W., Oksche, A., Polenov, A. and Scharrer, B. (Eds). 1978. Neurosecretion and Neuroendocrine Activity. Evolution, Structure and Function (Proc. VIIth Int. Symp. on Neurosecretion, Leningrad, 1976). Heidelberg: Springer.CrossRefGoogle Scholar
Barrington, E. J. W. (Ed.). 1979. Hormones and Evolution, Vols 1 and 2. New York: Academic Press.Google Scholar
Beale, M. H. and MacMillan, J. 1981. Preparation of 2- and 3-substituted gibberellins A9 and A4 for bioassay. Phytochemistry 20, 693701.CrossRefGoogle Scholar
Bückmann, D. 1983. The phylogeny and the polytropy of hormones. Horm. Metabol. Res. 15, 211217.CrossRefGoogle ScholarPubMed
Bürcky, K. 1977. Gibberellinaktivität verschiedener Schizaeaceen Antheridiogene im Zwergerbsentest. Z. Naturforsch. 32c, 652653.CrossRefGoogle Scholar
Clark, R. K. and Kenney, D. S. 1969. Comparison of staminate flower production on gynoecious strains of cucumber, Cucumis sativus L., by pure gibberellins (A3, A4, A7, A13) and mixtures. J. Am. Hort. Soc. 94, 131132.CrossRefGoogle Scholar
Csaba, G. 1980. Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting. Biol. Rev. Camb. Phil. Soc. 55, 4764.CrossRefGoogle ScholarPubMed
Devlin, R. M. 1981. Influence of two phthalimide growth regulators on the growth of lettuce, corn and radish. Proc. Pl. Growth Regulator Working Group 8, 197201.Google Scholar
Ishii, S., Hirano, T. and Wada, M. (Eds). 1980. Hormones, Adaptation and Evolution (Proc. Int. Symp. on Hormones and Evolution, Tokyo 1979): Berlin: Springer.Google Scholar
Kato, J., Katsumi, M., Tamura, S. and Sakurai, A. 1968. Plant growth-regulating activities of helminthosporal and its derivatives. In Biochemistry and Physiology of Plant Growth Substances, ed. Wightman, F. and Setterfield, G., pp. 347359. Ottawa: Runge Press.Google Scholar
Kochert, G. 1978. Sexual pheromones in algae and fungi. A. Rev. Pl. Physiol. 29, 461486.CrossRefGoogle Scholar
Los, M., Kust, C. A., Lamp, G. and Diehl, R. E. 1980. Phthalimides as plant growth regulators. Hort. Sci. 15, 22.Google Scholar
Metzger, I. D. and Suttle, I. C. 1982. Gibberellin-like activity of a substituted phthalimide. Pl. Physiol. Lancaster 69 (suppl.), 24.Google Scholar
Nakanishi, K., Endo, M., Näf, U. and Johnson, L. F. 1971. Structure of the antheridium-inducing factor of the fern Anemia phyllitidis. J. Am. Chem. Soc. 93, 55795581.CrossRefGoogle Scholar
Pike, L. M. and Peterson, C. E. 1969. Gibberellin A4/A7 for induction of staminate flowers on the gynoecious cucumber (Cucumis sativus L.). Euphytica 18, 106109.CrossRefGoogle Scholar
Schneller, I. J. 1974. Untersuchungen an einheimischen Farnen, insbesondere der Dryopteris filix mas-Gruppe. Ber. Schweiz. Bot. Ges. 84, 195217.Google Scholar
Schraudolf, H. 1982. Activity of 2,2-dimethyl-gibberellin A4 in the Anemia phyllitidis-antheridiogen assay. Naturwissenschaften 69, 286287.CrossRefGoogle Scholar
Schraudolf, H. 1983. Antheridiogen-like activity of AC-94, 377, a substituted phthalimide. Z. PflPhysiol. 109, 469472.Google Scholar
Sharp, P. B., Keitt, G. W., Clum, H. H. and Näf, U. 1975. Activity of antheridiogen from the fern Anemia phyllitidis in three flowering plant bioassays. Physiologia Pl. 34, 101105.CrossRefGoogle Scholar
Yamane, H., Takahashi, H. N., Takeno, K. and Furuya, M. 1979. Identification of gibberellin A4 methyl ester as a natural substance regulating formation of reproductive organs in Lygodium japonicum. Planta 147, 251256.CrossRefGoogle Scholar