No CrossRef data available.
Published online by Cambridge University Press: 14 February 2012
This paper studies two particular cases of the general 2-parameter eigenvalue problem namely
where A, B, B1, B2, C, C1, C2 are self-adjoint operators in Hilbert space, all except A being bounded. The disposable parameters λ and μ have to be determined so that the equations have non-trivial solutions x, y.
On the assumption that the solution is known for ∊ = o, solutions are constructed in the form of series for λ, μ, x, y as power series in ∊ with finite radius of convergence.