Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T20:18:59.890Z Has data issue: false hasContentIssue false

Using quasiconvex functionals to bound the effective conductivity of composite materials

Published online by Cambridge University Press:  14 November 2011

V. Nesi
Affiliation:
Dipartimento di Matematica Pura ed Applicata, Universita degli Studi de L'Aquila, 67010 L'Aquila, Italy

Synopsis

In this paper we establish bounds constraining the effective conductivity tensor of composites made of an arbitrary number n of possibly anisotropic phases in prescribed volume fractions. The bounds are valid in any spatial dimension d≧2. The bounds have a very simple and concise form and include those previously obtained by Hashin and Shtrikman, Murat and Tartar, Lurie and Cherkaev, Kohn and Milton, Avellaneda, Cherkaev, Lurie and Milton and Dell'Antonio and Nesi.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Allaire, G. and Kohn, R. V.. Optimal lower bound on the elastic energy of a composite made from two non-well-ordered materials. Quart App. Math. (To appear).Google Scholar
2Avellaneda, M., Cherkaev, A. V., Lurie, K. A. and Milton, G. W.. On the effective conductivity of polycrystals and a three-dimensional phase-interchange inequality. J. Appl. Phys. 63 (1988), 49895003.CrossRefGoogle Scholar
3Ball, J. M.. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337403.CrossRefGoogle Scholar
4Ball, J. M. and Murat, F.. W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984), 225253.CrossRefGoogle Scholar
5Bensousson, A., Lions, J. L. and Papanicolaou, G. C.. Asymptotic analysis for periodic structures (Amsterdam: North-Holland, 1978).Google Scholar
6Cherkaev, A. V. and Gibiansky, L.. Microstructure of composites of extremal rigidity and exact estimates of provided energy density (Ioffe Institute preprint 1115, 1987).Google Scholar
7Dacorogna, B.. Direct methods in the calculus of variations, Applied Mathematical Sciences 78 (Berlin: Springer, 1989).CrossRefGoogle Scholar
8De Giorgi, D. and Spagnolo, S.. Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. (4) 8 (1973) 391411.Google Scholar
9Dell'Antonio, G. F. and Nesi, V.. A scalar inequality which bounds the effective conductivity of composites. Proc. Roy Soc. London Ser. A 431 (1990), 519530.Google Scholar
10Ekeland, I. and Temam, R.. Convex analysis and variational problems (Amsterdam: North-Holland, 1976).Google Scholar
11Grabovsky, Y.. The G-closure of two well ordered anisotropic conductors. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 423–32.CrossRefGoogle Scholar
12Hashin, Z. and Shtrikman, S.. Conductivity of polycrystals. Phys. Rev. 130 (1963), 129133.CrossRefGoogle Scholar
13Hashin, Z. and Shtrikman, S.. A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33 (1962), 31253131.CrossRefGoogle Scholar
14Kohn, R. V.. The relaxation of a double-well energy. Continuum Mech. Thermodyn. 3 (1991), 193236.CrossRefGoogle Scholar
15Kohn, R. V. and Milton, G. W.. On bounding the effective conductivity of anisotropic composites. In Homogenization and effective moduli of materials and media, eds Ericksen, J. L., Kinderlehrer, D., Kohn, R. and Lions, J. L., 97125 (New York: Springer, 1986).CrossRefGoogle Scholar
16Lurie, K. A. and Cherkaev, A. V.. Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions. Proc. Roy. Soc. Edinburgh Sect A (1984), 71–87.Google Scholar
17Marino, A. and Spagnolo, S.. Un tipo di approssimazione dell'operatore ∑DiAijDj con operatori ∑DjbDj. Ann. Scuola Norm. Sup. Pisa. 23 (1969), 657673.Google Scholar
18Milton, G. W.. On characterizing the set of possible effective tensors of composites: the variational method and the translation method. Comm. Pure Appl. Math. 43 (1990), 63125.CrossRefGoogle Scholar
19Milton, G. W. and Kohn, R. V.. Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988), 597629.CrossRefGoogle Scholar
20Murat, F.. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa 5 (1978) 69–102.Google Scholar
21Murat, F. and Tartar, L.. Calcul des variations et homogenization in les methodes d'homogenization: theorie et applications en physique. Coll. de la Dir. des Etudes et Recherches d'Electricite de Frnce 319 (Paris: Eyrolles, 1985).Google Scholar
22Nesi, V.. On the G-closure in the polycrystalline problem. SIAM J. Appl. Math, (to appear).Google Scholar
23Nesi, V. and Milton, G. W.. Polycrystalline configurations that maximize electrical resistivity. J. Mech. Phys. Solids 39 (1991), 525542.CrossRefGoogle Scholar
24Reuss, A.. Berechnung der Flieϐgrenze von Mischkristallen aufgrund der Plastizitätsbedingung für Reinkristalle. Z. Angew Math. Mech. 9 (1929) 49.CrossRefGoogle Scholar
25Schulgasser, K. J.. Relationship between single-crystal and polycrystal electrical conductivity. J. Appl. Phys. 47 (5) (May 1976) 1880–6.CrossRefGoogle Scholar
26Schulgasser, K. J.. Sphere assemblage model for polycrystal and symmetric materials. J. Appl. Phys. 54 (3) (March 1983) 1380.CrossRefGoogle Scholar
27Spagnolo, S.. Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa. 22 (1968), 577597.Google Scholar
28Tartar, L.. Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, Heriot–Watt Symposium, Vol. IV, ed. Knops, R. J., Research Notes in Mathematics 39, 136212 (Boston: Pitman, 1979).Google Scholar
29Tartar, L.. Estimation fines des coefficients homogeneisés. In Ennio De Giorgi Colloquium, ed. Kree, P., 168187 (Boston: Pitman, 1985).Google Scholar
30Voigt, W.. Lehrkurch der Krystallphysik 410 (Leipzig: Teuber, 1928).Google Scholar