Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T12:44:39.476Z Has data issue: false hasContentIssue false

Über die C2-Kompaktheit der Bahn von Lösungen semflinearer parabolischer Systeme

Published online by Cambridge University Press:  14 November 2011

Reinhard Redlinger
Affiliation:
Mathematisches Institut I, Universität Karlsruhe, West Germany

Synopsis

The semilinear parabolic system ut + A(x, D)u = g(u) in (0, ∞) × Ω, Ω⊂ℝn bounded, u ∈ ℝN, with homogeneous boundary conditions B(x, D)u=0 on (0, ∞)×∂Ω is considered. The non-linearity g is assumed to be locally Lipschitz-continuous. It is shown that the orbit of a bounded regular solution u is relatively compact in .

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amann, H.. Invariant sets and existence theorems for semilinear parabolic and elliptic systems. J. Math. Anal. Appl. 65 (1978), 432467.CrossRefGoogle Scholar
2Hadeler, K. P.. Diffusion in Fisher's population model. Rocky Mountain J. Math. 11 (1981), 3945.CrossRefGoogle Scholar
3Ladyzhenskaja, O. A., Solonnikov, V. A. and Ural'tseva, N. N.. Linear and quasilinear equations of parabolic type. Amer. Math. Soc. Transl. Math. Monographs, 23. Providence 1968.Google Scholar
4Ladyzhenskaja, O. A. and Ural'tseva, N. N.. Linear and quasilinear elliptic equations (New York: Academic Press, 1968).Google Scholar
5Sobolevskij, P. E.. Equations of parabolic type in a Banach space. Amer. Math. Soc. Transl. (2) 49 (1966), 162.Google Scholar
6Walter, W.. Differential and integral inequalities. Ergebnisse der Mathematik und ihrer Grenzgebiete, 55 (Berlin: Springer, 1970).Google Scholar