Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:00:03.925Z Has data issue: false hasContentIssue false

A two-parameter eigenvalue problem involving complex potentials

Published online by Cambridge University Press:  14 November 2011

M. Faierman
Affiliation:
Department of Mathematics, University of the Witwatersrand, Johannesburg, South Africa

Synopsis

We consider a two-parameter system of ordinary differential equations of the second order involving complex potentials and show that, unlike the case of real potentials, the eigenfunctions of the system do not necessarily form a complete set in the usual Hilbert space associated with the problem. We also give a necessary and sufficient condition for the eigenfunctions to be complete. Finally, we establish some results concerning the eigenvalues of the system.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, R. A.. Sobolev spaces (New York: Academic, 1975).Google Scholar
2Agmon, S.. On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Commun. Pure Appl. Math. 15 (1962), 119147.CrossRefGoogle Scholar
3Agmon, S.. Lectures on elliptic boundary value problems (Princeton, N.J.: Van Nostrand, 1965).Google Scholar
4Atkinson, F. V., Multiparameter spectral theory. Bull. Amer. Math. Soc. 74 (1968), 127.CrossRefGoogle Scholar
5Atkinson, F. V.. Multiparameter eigenvalue problems, Vol. 1 (New York: Academic, 1972).Google Scholar
6Browne, P. J.. A multi-parameter eigenvalue problem. J. Math. Anal. Appl. 38 (1972), 553568.CrossRefGoogle Scholar
7Dunford, N. and Schwartz, J. T.. Linear operators, Part II (New-York: Interscience, 1963).Google Scholar
8Faierman, M.. The completeness and expansion theorem associated with the multiparameter eigenvalue problem in ordinary differential equations. J. Differential Equations 5 (1969), 197213.CrossRefGoogle Scholar
9Faierman, M.. On the distribution of the eigenvalues of two-parameter system of ordinary differential equations of the second order. SIAM J. Math. Anal. 8 (1977), 854870.CrossRefGoogle Scholar
10Faierman, M.. Eigenfunction expansions associated with a two-parameter system of differential equations. Proc. Roy. Soc. Edinburgh Sect. A 81 (1978), 7993.CrossRefGoogle Scholar
11Faierman, M.. The eigenvalues of a multiparameter system of differential equations. Appl. Anal. 19 (1985), 275290.Google Scholar
12Faierman, M.. Regularity of solutions of an elliptic boundary value problem in a rectangle. Comm. Partial Differential Equations 12 (1987), 285305.CrossRefGoogle Scholar
13Faierman, M. and Roach, G. F.. Eigenfunctions expansions associated with a multiparameter system of differential equations. Differential Integral Equations 2 (1989), 4556.CrossRefGoogle Scholar
14Gohberg, I. C. and Krein, M. G.. Introduction to the theory of linear non-selfadjoint operators (Providence, R.I.: American Mathematical Society, 1969).Google Scholar
15Hille, E.. Lectures on ordinary differential equations (Reading, Mass.: Addison-Wesley, 1969).Google Scholar
16Isaev, H. A.. On root elements of multiparameter spectral theory. Soviet Math. Dokl. 21 (1980), 127130.Google Scholar
17Kato, T.. Perturbation theory for linear operators, 2nd edn (New York: Springer, 1976).Google Scholar
18Naimark, M. A.. Linear differential operators, Part 1 (New York: Ungar, 1967).Google Scholar
19Volkmer, H.. On the completeness of the eigenvectors of right definite multiparameter problems. Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), 6978.CrossRefGoogle Scholar