Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-05T02:17:57.517Z Has data issue: false hasContentIssue false

A systematic study of heteroclinic cycles in dynamical systems with broken symmetries

Published online by Cambridge University Press:  14 November 2011

Reiner Lauterbach
Affiliation:
Weierstrass Institut für angewandte Analysis und Stochastik, Mohrenstrasse 39, D-10117 Berlin, Germany
Stanislaus Maier-Paape
Affiliation:
Institut für Mathematik, Universität Augsburg, Universitätsstrasse 14, D-86135 Augsburg, Germany
Ernst Reissner
Affiliation:
Institut für Mathematik, Universität Augsburg, Universitätsstrasse 14, D-86135 Augsburg, Germany

Abstract

Let X be a Banach space or a manifold and G a compact Lie group acting on X. We study G-equivariant (semi)flows on X in the context of forced symmetry breaking. After applying small symmetry breaking perturbations, certain generic invariant manifolds of the above flows persist slightly changed. We obtain necessary and sufficient conditions for the existence of heteroclinic cycles on the perturbed manifolds. Applications are given for the case G = SO(3).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bredon, G. E.. Introduction to Compact Transformation Groups, Pure and Applied Mathematics 46 (New York: Academic Press, 1972).Google Scholar
2Chow, S.-N. and Hale, J. K.. Methods of Bifürcation Theory, Grundlehren der Mathematischen Wissenschaften 251 (Berlin: Springer, 1982).Google Scholar
3Golubitsky, M., Stewart, I. and Schaeffer, D. G.. Singularities and Groups in Bifurcation Theory II, Applied Mathematical Sciences 69 (Berlin: Springer, 1988).Google Scholar
4Hirsch, M. W., Pugh, C. C. and Shub, M.. Invariant Manifolds, Lecture Notes in Mathematics 583 (Berlin: Springer, 1977).Google Scholar
5Ihrig, E. and Golubitsky, M.. Pattern selection with O(3)-symmetry. Physica D 13 (1984), 133.CrossRefGoogle Scholar
6Lauterbach, R. and Roberts, M.. Heteroclinic cycles in dynamical systems with broken spherical symmetry. J. Differential Equations 100 (1992), 428–48.CrossRefGoogle Scholar
7Maier-Paape, S. and Lauterbach, R.. Reaction diffusion systems on the 2-sphere and forced symmetry breaking (in prep.).Google Scholar
8Reißner, E.. Dynamische Systeme und erzwungene Symmetriebrechung am Beispiel sphärischer Probleme (Diplomarbeit, Universität Augsburg, 1993).Google Scholar
9Schwarz, G.. Lifting smooth homotopies. Inst. Hautes Etudes Sci. Publ. Math. 51 (1980), 37135.CrossRefGoogle Scholar