Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T17:03:45.334Z Has data issue: false hasContentIssue false

Superassociative systems with given semigroup of inner right translations

Published online by Cambridge University Press:  14 November 2011

H. Länger
Affiliation:
Technische Universität Wien, Institut für Algebra und Mathematische Strukturtheorie, Argentinierstraße 8, A-1040 Wien

Synopsis

Let n be some fixed positive integer and let (A, f) be some fixed algebra of type n + 1. (A, f) is called an n-dimensional superassociative system if f(f(x0,…, xn), ȳ) = f(x0, f(x1, ȳ), …, f(xn, ȳ)) for any x0, …, xnA and for any ȳ ∈ An. The semigroup ({f(., ā) | ā ∈ An},∘) is called the semigroup of inner right translations of (A, f). In the present note a theorem is derived in order to determine all n-dimensional superassociative systems with a given semigroup of inner right translations. As an example, using this method all two-element superassociative systems are determined.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dicker, R. M.. The substitutive law. Proc. London Math. Soc. 13 (1963), 493510.CrossRefGoogle Scholar
2Grätzer, G.. Universal algebra (New York: Springer, 1979).CrossRefGoogle Scholar
3Lausch, H. and Nöbauer, W.. Algebra of polynomials (Amsterdam: North-Holland, 1973).Google Scholar
4Menger, K.. Algebra of analysis. Notre Dame Math. Led. 3 (1944). 5Google Scholar
5Menger, K.. Superassociative systems and logical functors. Math. Ann. 157 (1964), 278295.CrossRefGoogle Scholar
6Nöbauer, W.. Ëber die Darstellung von universellen Algebren durch Funktionenalgebren. Publ. Math. Debrecen 10 (1963), 151154.CrossRefGoogle Scholar
7Schein, B. M.. Theory of semigroups as a theory of superpositions of many-place functions (Russian). Interuniv. Sci. Sympos. General Algebra (Russian), 169–190 (Tartu. Gos. Univ., Tartu, 1966).Google Scholar