Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-05T02:35:53.596Z Has data issue: false hasContentIssue false

Stability and instability of some nonlinear dispersive solitary waves in higher dimension

Published online by Cambridge University Press:  14 November 2011

Anne de Bouard
Affiliation:
Laboratoire d'Analyse Numérique, Université Paris-Sud, Bâtiment 425, 91405 Orsay, France

Abstract

We study the stability of positive radially symmetric solitary waves for a three dimensional generalisation of the Korteweg de Vries equation, which describes nonlinear ion-acoustic waves in a magnetised plasma, and for a generalisation in dimension two of the Benjamin–Bona–Mahony equation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Berestycki, H., Gallouët, T. and Kavian, O.. Equations de champs scalaires Euclidiens non lineaires dans le plan. C. R. Acad. Sci. Paris Ser. I 297 (1983), 307–10.Google Scholar
2Berestycki, H. and Lions, P. L.. Nonlinear scalar field equations. Arch. Rational Mech. Anal. 82 (1983), 313–76.CrossRefGoogle Scholar
3Biler, P., Dziubanski, J. and Hebisch, W.. Scattering of small solutions to generalized Benjamin-Bona-Mahony equation in several space dimensions. Comm. Partial Differential Equations 17 (1992), 1737–58.CrossRefGoogle Scholar
4Bona, J. L., Souganidis, P. E. and Strauss, W. A.. Stability and instability of solitary waves of Korteweg-de Vries type. Proc. Roy. Soc. London Ser. A 411 (1987), 395412.Google Scholar
5Bona, J. L. and Soyeur, A.. On the stability of solitary waves solutions of model equations for long waves. J. Nonlinear Sci. 4 (1994), 449–70.CrossRefGoogle Scholar
6Coffman, C. V.. Uniqueness of the ground state solution for Δu – u + u3 = 0, and a variational characterization of other solutions. Arch. Rational Mech. Anal. 30 (1981), 141–67.Google Scholar
7Fedoriouk, M.. Methodes asymptotiques pour les equations differentielles ordinaires lineaires (Moscow: Mir, 1987).Google Scholar
8Grillakis, M., Shatah, J. and Strauss, W.. Stability theory of solitary waves in the presence of symmetry I. J. Fund. Anal. 74 (1987), 160–97.CrossRefGoogle Scholar
9Iwasaki, H., Toh, S. and Kawahara, T.. Cylindrical quasi-solitons of the Zakharov-Kuznetsov equation. Phys. D 43(1990), 293303.CrossRefGoogle Scholar
10Kato, T.. Quasilinear equations of evolution with application to partial differential equations. Lecture Notes in Mathematics 448 (1975), 2750.Google Scholar
11Kwong, M. K.. Uniqueness of positive radial solutions of Δu – u + up = 0 in Rn. Arch. Rational Mech. Anal. 105(1989), 243–66.CrossRefGoogle Scholar
12Melkonian, S. and Maslowe, S. A.. Two dimensional amplitude evolution equations for nonlinear dispersive waves on thin films. Phys. D 34 (1989), 255–69.CrossRefGoogle Scholar
13Souganidis, P. E. and Strauss, W. A.. Instability of a class of dispersive solitary waves. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 195212.CrossRefGoogle Scholar
14Weinstein, M. I.. Nonlinear Schrodinger equations and sharp interpolation estimates. Comm. Math. Phys. 87(1983), 567–76.CrossRefGoogle Scholar
15Weinstein, M. I.. Modulational stability of ground states of nonlinear Schrodinger equations. SIAM J. Math. Anal. 16 (1985), 472–91.CrossRefGoogle Scholar
16Weinstein, M. I.. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39 (1986), 5168.CrossRefGoogle Scholar
17Zahkarov, V. E. and Kuznetsov, E. A.. Three-dimensional solitons. Sov. Phys. JETP 39 (1974), 285–6.Google Scholar