Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T11:40:14.922Z Has data issue: false hasContentIssue false

Spectral properties of the Orr-Sommerfeld problem

Published online by Cambridge University Press:  14 November 2011

Heinz Langer
Affiliation:
Institut für Analysis, Technische Mathematik und Versicherungsmathematik, Technische Universität Wien, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria
Christiane Tretter
Affiliation:
NWF I—Mathematik, Universität Regensburg, D-93040 Regensburg, Germany

Extract

In this paper, we study the Orr–Sommerfeld problem on a finite interval. It is shown that the eigenfunctions and associated functions form a Bari basis in a suitable Hilbert space if the unperturbed velocity profile u is sufficiently smooth. To this end, the Orr–Sommerfeld problem is considered as a bounded perturbation of a certain self-adjoint spectral problem.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1DiPrima, R. C. and Habetler, G. J.. A completeness theorem for nonselfadjoint eigenvalue problems in hydrodynamic stability. Arch. Rational Mech. Anal. 34 (1969), 218–27.CrossRefGoogle Scholar
2Gohberg, I. C. and Krein, M. G.. Introduction to the Theory of Linear Nonselfadjoint Operators, AMS Translations of Mathematical Monographs 18 (Providence, RI: American Mathematical Society, 1969).Google Scholar
3Langer, H., Pivovarchik, V. and Tretter, C.. Spectral properties of a compactly perturbed linear span of projections. Integral Equations Operator Theory 26:3 (1996), 353–66.CrossRefGoogle Scholar
4Lin, C. C.. The Theory of Hydrodynamic Stability (Edinburgh: Cambridge University Press, 1955).Google Scholar
5Markus, A. S.. Introduction to the Theory of Polynomial Operator Pencils, AMS Translations of Mathematical Monographs 71 (Providence, RI: American Mathematical Society, 1988).Google Scholar
6Schensted, I. V.. Contributions to the Theory of Hydrodynamic Stability (Ph.D. Thesis, University of Michigan, Ann Arbor, 1960).Google Scholar
7Shkalikov, A. A. and Tretter, C.. Kamke problems. Properties of the eigenfunctions. Math. Nachr. 170 (1994), 251–75.CrossRefGoogle Scholar
8Shkalikov, A. A. and Tretter, C.. Spectral analysis for linear pencils N–λP of ordinary differential operators. Math. Nachr. 179 (1996), 275305.CrossRefGoogle Scholar