Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T07:56:20.716Z Has data issue: false hasContentIssue false

Spectral properties of a two parameter nonlinear Sturm-Liouville problem

Published online by Cambridge University Press:  14 November 2011

Tetsutaro Shibata
Affiliation:
Department of Mathematics, Aichi Prefectural University, 3-28 Takada-chô, Mizuho-ku Nagoya, 467 Japan

Synopsis

We consider the nonlinear Sturm–Liouville problem with two parameters on the general level set

We establish asymptotic formulae of the n-th variational eigenvalue λ = λn(μ, α) as α→∞ and α↓(nπ)2.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Beresticki, H.. Le nombre de solutions de certain problerhes semi-lineaires elliptiques. J. Fund. Anal. 40 (1981), 129.CrossRefGoogle Scholar
2Binding, P. and Browne, P. J.. Asymptotics of eigencurves for second order ordinary diff9rential equations, I. J. Differential Equations 88 (1990), 3045.CrossRefGoogle Scholar
3Crandall, M. G. and Rabinowitz, P. H.. Bifurcation from simple eigenvalues. J. Funct Anal. 8 (1971), 321340.CrossRefGoogle Scholar
4Itô, K. (ed.). Encyclopedic Dictionary of Mathematics, 2nd edn, Vol. 4 (Cambridge Massachusetts: MIT Press, 1987).Google Scholar
5Shibata, T.. Nodal and asymptotic properties of solutions to nonlinear elliptic eigenvalue problems on general level sets. Israel J. Math. 74 (1991), 225240.CrossRefGoogle Scholar
6Zeidler, E., Ljusternik-Schnirelman theory on general level sets. Math. Nachr. 129 (1986), 235259.CrossRefGoogle Scholar