Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:26:55.089Z Has data issue: false hasContentIssue false

Some classes of linear bornological spaces

Published online by Cambridge University Press:  14 November 2011

Miguel A. Canela
Affiliation:
Departamento de Teoría de Funciones, Facultad de Matemáticas, Universidad de Barcelona, Gran Vía 585, Barcelona 7, Spain

Synopsis

In this paper, two classes of linear bornological spaces are considered, the Kolmogorov spaces and the spaces of type b. These spaces satisfy conditions which are weakenings of the definition of infratopological linear bornological spaces. Various properties of these spaces are proved, and two examples are given, showing the independence of the two conditions introduced.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Canela, M. A.. Bornologia equicontinua en un espacio de aplicaciones lineales continuas. Rev. Univ. Santander 2, I (1979), 111121.Google Scholar
2Canela, M. A.. Linear bornologies and associated topologies. Collect. Math. to appear.Google Scholar
3Grothendieck, A.. Sur les espaces (F) et (DF). Summa Brasil. Math. 3 (1952), 57123.Google Scholar
4Hogbe–Nlend, H.. Théorie des bornologies et applications. Lecture Notes in Mathematics 213 (Berlin: Springer, 1971).Google Scholar
5Hogbe–Nlend, H.. Techniques de bornologie en théorie des espaces vectoriels bornologiques et des espaces nucléaires. Summer School in Topological Vector Spaces. Lecture Notes in Mathematics 331 (Berlin: Springer, 1973).Google Scholar
6Hogbe-Nlend, H.. Bornology and functional analysis (Amsterdam: North-Holland, 1978).Google Scholar
7Husain, T. and Khaleelulla, S. M.. Barrelledness in topological and ordered vector spaces. Lecture Notes in Mathematics 692 (Berlin: Springer, 1978).Google Scholar
8Nel, L. D.. Note on completeness in a pseudotopological linear space. J. London Math. Soc. 81 (1965), 497498.CrossRefGoogle Scholar
9.Perrot, B.. Sur la Mackey-Convergence (Thèse 3ème Cycle, Univ. de Bordeaux, 1970).Google Scholar
10Waelbroeck, L.. Les espaces à bornés complets. Colloque sur I'Analyse Fonctionelle, pp. 5155 (Louvain: Librairie Universitaire, 1961).Google Scholar