We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
1
Abert, M., Bergeron, N., Biringer, I. and Gelander, T.. Convergence of normalized Betti numbers in nonpositive curvature. Duke Math. J. 172 (2023), 633–700.CrossRefGoogle Scholar
2
Avramidi, G., Okun, B. and Schreve, K.. Mod $p$ and torsion homology growth in nonpositive curvature. Invent. Math. 226 (2021), 711–723.CrossRefGoogle Scholar
3
Atiyah, M. F.. Elliptic operators, discrete groups and von Neumann algebras. In Colloque ‘Analyse et Topologie’ en l'Honneur de Henri Cartan (Orsay, 1974). Astérisque, vol. 32–33, pp. 43–72 (Paris: Soc. Math. France, 1976).Google Scholar
4
Beauville, A.. Complex Algebraic Surfaces, 2nd edn. London Mathematical Society Student Texts, vol. 34 (Cambridge: Cambridge University Press, 1996).Google Scholar
5
Di Cerbo, G. and Di Cerbo, L. F.. On Seshadri constants of varieties with large fundamental group. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)19 (2019), 335–344.Google Scholar
6
Di Cerbo, L. F. and Lombardi, L.. $L^2$-Betti numbers and convergence of normalized Hodge numbers via the weak generic Nakano vanishing theorem. Ann. Inst. Fourier (2023), 27. (Online first).Google Scholar
7
Di Cerbo, L. F. and Stern, M.. Price inequalities and Betti number growth on manifolds without conjugate points. Commun. Anal. Geom. 30 (2022), 297–334.CrossRefGoogle Scholar
8
Dodziuk, J.. $L^{2}$ harmonic forms on rotationally symmetric Riemannian manifolds. Proc. Am. Math. Soc. 77 (1979), 395–400.Google Scholar
9
Donnelly, H. and Xavier, F.. On the differential form spectrum of negatively curved Riemannian manifolds. Am. J. Math. 106 (1984), 169–185.CrossRefGoogle Scholar
10
Gromov, M.. Kähler hyperbolicity and $L_2$-Hodge theory. J. Differ. Geom. 33 (1991), 263–292.CrossRefGoogle Scholar
11
Jost, J. and Zuo, K.. Vanishing theorems for $L^2$-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry. Commun. Anal. Geom. 8 (2000), 1–30.CrossRefGoogle Scholar
12
Lück, W.. Approximating $L^2$-invariants by their finite-dimensional analogues. Geom. Funct. Anal. 4 (1994), 455–481.CrossRefGoogle Scholar
13
Lück, W.. $L^2$-Invariants: Theory and Applications to Geometry and$K$-Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 44 (Berlin: Springer-Verlag, 2002).Google Scholar
14
Liu, Y., Maxim, L. and Wang, B.. Aspherical manifolds, Mellin transformation and a question of Bobadilla-Kollár. J. Reine Angew. Math. 781 (2021), 1–18.CrossRefGoogle Scholar
15
Liu, Y., Maxim, L. and Wang, B.. Topology of subvarieties of complex semi-abelian varieties. Int. Math. Res. Not.14 (2021), 11169–11208.CrossRefGoogle Scholar
16
Schoen, R. and Yau, S.-T.. Lectures on differential geometry. In Conference Proceedings and Lecture Notes in Geometry and Topology, vol. I (Cambridge, MA: International Press, 1994).Google Scholar