Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T17:20:39.502Z Has data issue: false hasContentIssue false

Serrin integrals and second order problems of plasticity

Published online by Cambridge University Press:  14 November 2011

L. Cesari
Affiliation:
The University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
Wei H. Yang
Affiliation:
The University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

Synopsis

We use the modern tools of the duality principles and the calculus of variations to formulate, analyse and solve a class of plasticity problems involving second order partial derivatives. The Serrin-type integrals can most appropriately facilitate the existence statements for the extrema from either side of the duality relation in a larger class of BV functions, and interpret the solutions with possible discontinuities on sets of measure zero. The exact solutions of a beam and numerical solutions of a circular plate are presented to demonstrate the theoretical conclusions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Cesari, L.. Sulle funzioni a variazione limitate. Ann. Scuola Norm. Sup. Pisa 5 (1936), 299313.Google Scholar
2Cesari, L., Brandi, P. and Salvadori, A.. Discontinuous solutions in problems of optimization. Ann. Scuola Norm. Sup. Pisa 15 (1988), 219237.Google Scholar
3Cesari, L., Brandi, P. and Salvadori, A.. Existence theorems concerning simple integrals of the calculus of variations for discontinuous solutions. Arch. Rational Mech. Anal. 98 (1987), 307328.CrossRefGoogle Scholar
4Cesari, L., Brandi, P. and Salvadori, A.. Existence theorems for multiple integrals of the calculus of variations for discontinuous solutions. Ann. Mat. Pure Appl. (4) 152 (1988), 95121.CrossRefGoogle Scholar
5Cesari, L., Brandi, P. and Salvadori, A.. Seminormality conditions in the calculus of variations for BV solutions (to appear).Google Scholar
6Cesari, L., Brandi, P. and Salvadori, A.. Existence theorems for multiple integrals with differential constraints (to appear).Google Scholar
7Ekeland, I. and Temam, R.. Analyse Convexe et Problèmes Variationnels (Paris: Dunod, Gauthier-Villars, 1974).Google Scholar
8Krickeberg, K.. Distributionen, Funktionen beschränkter Variation und Lebesguescher Inhalt nichtparametrischer Flächen. Ann. Mat. Pura Appl. 44 (1957), 105133.CrossRefGoogle Scholar
9Serrin, J.. On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961), 139167.CrossRefGoogle Scholar
10Temam, R.. Navier Stokes Equations (Amsterdam: North Holland, 1977).Google Scholar
11Temam, R.. Mathematical Problems in Plasticity (Paris: Gauthier-Villars, 1983).Google Scholar
12Yang, W. H.. A duality theorem for plastic plates. Acta Mech. 69 (1987), 177193.CrossRefGoogle Scholar
13Yang, W. H.. A variational principle and an algorithm for limit analysis of beams and plates. Comput. Methods Appl. Mech. 33 (1982), 575582.CrossRefGoogle Scholar
14Yang, W. H.. Minimization approach to limit solutions of plates. Comput. Methods Appl. Mech. Engrg. 28 (1981), 265274.CrossRefGoogle Scholar
15Yang, W. H.. A generalized von Mises criterion for yield and fracture. J. Appl. Mech. 47 (1980), 297300.CrossRefGoogle Scholar
16Yang, W. H.. A useful theorem for constructing convex yield functions. J. Appl. Mech. 47 (1980), 301303.CrossRefGoogle Scholar
17Cesari, L.. Existence theorems for multidimensional Lagrange problems. J. Optim. Theory Appl. 1 (1967), 87112.CrossRefGoogle Scholar
18Adams, R. A.. Sobolev Spaces (New York: Academic Press, 1975).Google Scholar
19Goffman, C. and Serrin, J.. Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964), 159178.CrossRefGoogle Scholar
20Giaquinta, M., Modica, G. and Soucek, J.. Functionals with linear growth in the calculus of variations, I. Comment. Math. Univ. Carolin. 20 (1979), 143156.Google Scholar
21Maso, G. Dal. Integral representation on BV(Ω) of Gamma-limits of variational integrals. Manuscripta Math. 30 (1980), 387416.CrossRefGoogle Scholar
22Ambrosio, L., Mortola, S. and Tortorelli, V. M.. Functionals with linear growth defined on vector valued BV functions (Preprint, Scuola Normale Superiore de Pisa, Pisa, 1988).Google Scholar
23Buttazzo, G.. Semicontinuity, relaxation and integral representation problems in the calculus of variations. Pitman Research Notes in Mathematics, 1619 (Harlow: Longman, 1989).Google Scholar
24Federer, H.. Geometric measure theory (Berlin: Springer, 1969).Google Scholar
25Giusti, E.. Minimal surfaces and functions of bounded variation (Boston: Birkhauser, 1984).CrossRefGoogle Scholar
26Massari, U. and Miranda, M.. Minimal surfaces of codimension one. Notas de Matematica (Amsterdam: North Holland, 1984).Google Scholar
27Vol'pert, A. I. and Hudjaev, S. I.. Analysis in classes of discontinuous functions and equations of mathematical physics (Dordrecht: Martinus Nijhoff Publishers, 1985).Google Scholar