No CrossRef data available.
Published online by Cambridge University Press: 14 November 2011
In this paper we study the Poisson geometry of the second Hamiltonian structure for the periodic N Toda lattice, around a certain family of singularities. We show that their singular leaves are not isolated and that the regular codimension of the leaves at points of this kind is always equal to three. This result is based on a rather unexpected result about a certain Toeplitz matrix.