Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T22:44:04.735Z Has data issue: false hasContentIssue false

Riesz transforms related to Bessel operators

Published online by Cambridge University Press:  23 July 2007

Jorge J. Betancor
Affiliation:
Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, Tenerife, Islas Canarias, Spain ([email protected]; [email protected])
Juan C. C. Fariña
Affiliation:
Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, Tenerife, Islas Canarias, Spain ([email protected]; [email protected])
Dariusz Buraczewski
Affiliation:
Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland ([email protected])
Teresa Martínez
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, Ciudad Universitaria de Canto Blanco, 28049 Madrid, Spain ([email protected]; [email protected])
José L. Torrea
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, Ciudad Universitaria de Canto Blanco, 28049 Madrid, Spain ([email protected]; [email protected])

Abstract

Riesz transforms $R_\mu$ related to the Bessel operators

$$ \Delta_\mu=x^{-\mu-1/2}Dx^{2\mu+1}Dx^{-\mu-1/2} $$

are studied in this work. We develop for $R_\mu$ a theory that runs parallel to that for the Euclidean Hilbert transform. It is proved that $R_\mu$ is actually a Calderón–Zygmund singular integral operator. Also, $R_\mu$ is seen to be the boundary value of the appropriate harmonic extension for this context. Finally, we analyse weighted inequalities involving $R_\mu$.

Type
Research Article
Copyright
2007 Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)