No CrossRef data available.
Published online by Cambridge University Press: 12 July 2007
We consider a family of self-adjoint 2 × 2-block operator matrices Ãϑ in the space L2(0, 1) ⊕ L2(0, 1), depending on the real parameter ϑ. If Ã0 has an eigenvalue that is embedded in the essential spectrum, then it is shown that for ϑ ≠ 0 this eigenvalue in general disappears, but the resolvent of Ãϑ has a pole on the unphysical sheet of the Riemann surface. Such a pole is called a resonance pole. The unphysical sheet arises from analytic continuation from the upper half-plane ℂ+ across the essential spectrum. Furthermore, the asymptotic behaviour of this resonance pole for small ϑ is investigated. The results are proved by considering a certain λ-rational Sturm-Liouville problem and its Titchmarsh–Weyl coefficient.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.