Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T12:00:18.628Z Has data issue: false hasContentIssue false

Regularität in der nichtlinearen Spektraltheorie

Published online by Cambridge University Press:  14 November 2011

Jürgen Weyer
Affiliation:
Mathematisches Institut der Universität zu Köln, West Germany

Synopsis

A non-linear spectral theory is developed which includes the spectral theory of linear operators and the theory of (maximal) monotone operators. In this nonlinear theory certain polytone operators will play the role of the linear or monotone operators. The concept of λ-polytonicity allows the characterization of regular points in terms of maximality. Furthermore, properties of the spectrum of non-linear operators are discussed in terms of the corresponding properties of their linearizations and vice versa.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Achieser, N. I. and Glasmann, I. M.. Theorie der linearen Operatoren im Hübert-Raum (Berlin: Akademie-Verlag, 1968).Google Scholar
2Brézis, H.. Operateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hüben (Amsterdam: North Holland, 1973).Google Scholar
3Browder, F.. Nonlinear maximal monotone operators in Banach space. Math. Ann. 175 (1968), 89113.CrossRefGoogle Scholar
4Browder, F.. Existence theorems for nonlinear partial differential equations. Global Analysis (Proc. Sympos. Pure Math., Berkeley, Calif., 1968), pp. 160. Providence, R. I.: Amer. Math. Soc, 1970.Google Scholar
5Furi, M. and Vignoli, A.. A nonlinear spectral approach to surjectivity in Banach spaces. J. Functional Analysis 20 (1975), 304318.CrossRefGoogle Scholar
6Hirzebruch, F. and Scharlau, W.. Einführung in die Funktional-analysis (Mannheim: Bibliographisches Institut, 1971).Google Scholar
7Kato, T.. Perturbation theory for linear operators (New York: Springer, 1966).Google Scholar
8Krasnoselskij, M. A.. Topological methods in the theory of nonlinear integral equations (Oxford: Pergamon, 1964).Google Scholar
9Lescarret, C.. Cas d'addition des applications monotones maximales dans un espace de Hilbert. CR. Acad. Sci. Paris 261 (1965), 11601163.Google Scholar
10Minty, G.. Monotone nonlinear operators in Hilbert space. Duke Math. J. 29 (1962), 341346.CrossRefGoogle Scholar
11Rockafellar, R. T.. On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33 (1970), 209216.CrossRefGoogle Scholar
12Singhof, W.. Über nichtlineare Spektral- und Störungstheorie. Manuscripta Math. 14 (1974), 123162.CrossRefGoogle Scholar
13Weyer, J.. Zyklische Monotonie eines nichtlinearen Operators und Symmetrie sowie Selbstadjun-giertheit seiner Linearisierung (Koln: Diplomarbeit, 1974).Google Scholar
14Weyer, J.. Nichtlineare Spektraltheorie und polytone Operatoren (Koln: Doktorarbeit, 1976).Google Scholar
15Zarantonello, E.. Projections on convex sets in Hilbert space and spectral theory. Contributions to nonlinear functional analysis (New York London: Academic Press, 1971).Google Scholar