Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T22:15:08.744Z Has data issue: false hasContentIssue false

Quasi-static crack growth for a cohesive zone model with prescribed crack path

Published online by Cambridge University Press:  26 March 2007

Gianni Dal Maso
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Beirut 4, 34014 Trieste, Italy ([email protected]; [email protected])
Chiara Zanini
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Beirut 4, 34014 Trieste, Italy ([email protected]; [email protected])

Abstract

In this paper we study the quasi-static crack growth for a cohesive zone model. We assume that the crack path is prescribed and we study the time evolution of the crack in the framework of the variational theory of rate-independent processes.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chambolle, A.. A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Analysis 167 (2003), 211233.Google Scholar
2 Ciarlet, P. G.. Mathematical elasticity, vol. II: Theory of plates (Amsterdam: North-Holland, 1997).Google Scholar
3 Dal Maso, G. and Toader, R.. A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Analysis 162 (2002), 101135.CrossRefGoogle Scholar
4 Dal Maso, G. and Toader, R.. A model for the quasi-static growth of brittle fractures based on local minimization. Math. Models Meth. Appl. Sci. 12 (2002), 17731799.CrossRefGoogle Scholar
5 Dal Maso, G., Francfort, G. A. and Toader, R.. Quasi-static evolution in brittle fracture: the case of bounded solutions. In Calculus of variations: topics from the mathematical heritage of E. De Giorgi, pp. 245266 (Caserta: Seconda Università di Napoli, 2004).Google Scholar
6 Dal Maso, G., Francfort, G. A. and Toader, R.. Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Analysis 176 (2005), 165225.Google Scholar
7 Damlamian, A.. Le problème de la passoire de Neumann. Rend. Sem. Mat. Univ. Polit. Torino 43 (1985), 427450.Google Scholar
8 Duvaut, G. and Lions, J. L.. Inequalities in mechanics and physics (Springer, 1976).Google Scholar
9 Francfort, G. A. and Larsen, C. J.. Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56 (2003), 14651500.Google Scholar
10 Francfort, G. A. and Marigo, J.-J.. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998), 13191342.Google Scholar
11 Mainik, A. and Mielke, A.. Existence results for energetic models for rate-independent systems. Calc. Var. PDEs 22 (2005), 7399.Google Scholar
12 Mielke, A.. Analysis of energetic models for rate-independent materials. Proc. Int. Congr. Mathematicians, Beijing, 2002, vol. III, pp. 817828 (Beijing: Higher Education Press, 2002).Google Scholar
13 Murat, F.. The Neumann sieve. In Nonlinear Variational Problems. Research Notes in Mathematics, vol. 127, pp. 2432 (Boston, MA: Pitman, 1985).Google Scholar
14 Neveu, J.. Discrete-parameter martingales (Elsevier, 1975).Google Scholar
15 Picard, C.. Analyse limite d'équations variationelles dans un domaine contenant une grille. RAIRO Analyse Numér. 21 (1987), 293326.Google Scholar
16 Visintin, A.. Strong convergence results related to strict convexity. Commun. PDEs 9 (1984), 439466.Google Scholar