Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T12:00:06.064Z Has data issue: false hasContentIssue false

Quadratic forms, weighted eigenfunctions and boundary value problems for non-linear second order ordinary differential equations

Published online by Cambridge University Press:  14 November 2011

Alessandro Fonda
Affiliation:
Institute of Mathematics, Chemin du Cyclotron 2, B1348 Louvain-la-Neuve, Belgium
Jean Mawhin
Affiliation:
Institute of Mathematics, Chemin du Cyclotron 2, B1348 Louvain-la-Neuve, Belgium

Synopsis

Some known results for different kinds of boundary value problems for second order ordinary differential equations are generalised. Different approaches are compared with one another, using topological and variational methods and the theory of weighted eigenvalue problems.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Atkinson, F. V.. Discrete and Continuous Boundary Problems (New York, London: Academic Press, 1964).Google Scholar
2.Everitt, W. N.. On certain regular ordinary differential expressions and related differential operators. In Proceedings, International Conference on Spectral Theory of Differential Operators, eds Knowles, I. W. and Lewis, R. T., pp. 115167 (University of Alabama, 1981).Google Scholar
3.Everitt, W. N., Kwong, M. K. and Zettl, A.. Oscillations of eigenfunctions of weighted regular Sturm–Liouville problems. J. London Math. Soc. (2) 27 (1983), 106120.CrossRefGoogle Scholar
4.Fabry, C.. Periodic solutions of the equation x“+f(t, x) = 0 (preprint 117, Université de Louvain-la-Neuve, 1987).Google Scholar
5.Fabry, C. and Fonda, A.. Periodic solutions of nonlinear differential equations with double resonance (preprint 133, Université de Louvain-la-Neuve, 1988).Google Scholar
6.Fonda, A. and Habets, P.. Periodic solutions of asymptotically positively homogeneous differential equations (preprint 130, Université de Louvain-la-Neuve, 1988).Google Scholar
7.Gaines, R. E. and Mawhin, J.. Coincidence Degree and Nonlinear differential equations. Lecture Notes in Mathematics 568 (Berlin: Springer, 1977).CrossRefGoogle Scholar
8.Gossez, J. P.. Some nonlinear differential equations with resonance at the first eigenvalue. Confer. Sem. Mat. Univ. Bari 167 (1979), 355389.Google Scholar
9.Gupta, C. P. and Mawhin, J.. Asymptotic conditions at the two first eigenvalues for the periodic solutions of Liénard differential equations and an inequality of E. Schmidt. Zeitschrift Anal. Anwendungen 3 (1984), 3342.CrossRefGoogle Scholar
10.Habets, P. and Metzen, G.. Existence of periodic solutions of Duffing equations. J. Differential Equations (to appear).Google Scholar
11.Lasota, A. and Opial, Z.. Sur les solutions périodiques des équations différentielles ordinaires. Ann. Polon. Math. 16 (1984), 6994.CrossRefGoogle Scholar
12.Mawhin, J.. Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conf. Ser. in Math. 40 (Providence: American Mathematical Society, 1979).CrossRefGoogle Scholar
13.Mawhin, J.. Compacité, Monotonie et Convexité dans l'Etude de Problèmes aux Limites Semi-linéaires (Séminaire d'analyse moderne 19, Université de Sherbrooke, 1981).Google Scholar
14.Mawhin, J.. Problemes de Dirichlet variationnels non linéaires (Séminaire Math. Sup., Université de Montreal, 1987).Google Scholar
15.Mawhin, J. and Ward, J. R.. Nonuniform nonresonance conditions at the two first eigenvalues for periodic solutions of forced Liénard and Duffing equations. Rocky Mountain J. Math. 112 (1982), 643654.Google Scholar
16.Mawhin, J. and Ward, J. R.. Periodic solutions of some forced Lienard differential equations at resonance. Arch. Math. (Basel) 41 (1983), 337351.Google Scholar
17.Rabinowitz, P.. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conf. Ser. in Math. 65 (Providence: American Mathematical Society, 1986).CrossRefGoogle Scholar