Published online by Cambridge University Press: 14 November 2011
Most of the development of shape theory was in the so-called outer shape theory, where the shape of spaces is described with the help of some outside objects.
This paper belongs to the so-called inner shape theory, in which the shape of spaces is described intrinsically without the use of any outside gadgets. We give a description of shape theory that does not need absolute neighbourhood retracts. We prove that the category ℋN whose objects are topological spaces and whose morphisms are proximate homotopy classes of proximate nets is naturally equivalent to the shape category h. The description of the category ℋN for compact metric spaces was given earlier by José M. R. Sanjurjo. We also give three applications of this new approach to shape theory.