Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T06:36:01.450Z Has data issue: false hasContentIssue false

Products of nilpotent linear transformations

Published online by Cambridge University Press:  14 November 2011

R. P. Sullivan
Affiliation:
Department of Mathematics, University of Western Australia, Nedlands, WA 6009, Australia

Abstract

In this paper we characterise the linear transformations of an infinite-dimensional vector space that can be written as the product of nilpotent transformations. This and a linear version of Malcev's congruence on transformation semigroups are then used to construct a new class of congruence-free semigroups.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Clifford, A. H. and Preston, G. B.. The Algebraic Theory of Semigroups, Math. Surveys 7 (Providence, R.I.: American Mathematical Society, Vol. 1, 1961; Vol. 2, 1967).Google Scholar
2Hannah, J. and O'Meara, K.. Depth of idempotent-generated semigroups of a regular ring. Proc. London Math. Soc. 59 (1989), 464482.CrossRefGoogle Scholar
3Howie, J. M.. The subsemigroup generated by the idempotents of a full transformation semigroup. J. London Math. Soc. 41 (1966), 707716.CrossRefGoogle Scholar
4Howie, J. M.. An Introduction to Semigroup Theory (London: Academic Press, 1976).Google Scholar
5Howie, J. M. and Paula, M.Marques-Smith, O.. Inverse semigroups generated by nilpotent transformations. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 153162.CrossRefGoogle Scholar
6Howie, J. M. and Paula, M.Marques-Smith, O.. A nilpotent-generated semigroup associated with a semigroup of full transformations. Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 181187.CrossRefGoogle Scholar
7Jacobson, N.. Lectures in Abstract Algebra, Vol. II (New York: Van Nostrand, 1953).CrossRefGoogle Scholar
8Kothe, G.. Topological Vector Spaces, Vol. 1 (Berlin: Springer, 1969).Google Scholar
9Paula, M.Marques, O.. A congruence-free semigroup associated with an infinite cardinal number. Proc. Roy. Soc. Edinburgh Sect. A 93 (1983), 245257.Google Scholar
10Reynolds, M. A. and Sullivan, R. P.. The ideal structure of idempotent-generated transformation semigroups. Proc. Edinburgh Math. Soc. 28 (1985), 319331.CrossRefGoogle Scholar
11Reynolds, M. A. and Sullivan, R. P.. Products of idempotent linear transformations. Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), 123138.CrossRefGoogle Scholar
12Saronova, T. N.. Congruences on semigroups of linear operators. Dokl. Akad. Nauk Ukrain. SSR Ser. A (1979) (1), 1719.Google Scholar
13Scheiblich, H. E.. Concerning congruences on symmetric inverse semigroups. Czech. Math. J. 23 (98) (1973), 110.CrossRefGoogle Scholar
14Schein, B. M.. Homomorphisms and subdirect decompositions of semigroups. Pacific J. Math. 17 (1966), 529547.CrossRefGoogle Scholar
15Sierpinski, W.. Cardinal and Ordinal Numbers (Warsaw: Panstwowe Wydawnictwo Naukowe, 1958).Google Scholar
16Sullivan, R. P.. Semigroups generated by nilpotent transformations. J. Algebra 110 (1987), 324343.CrossRefGoogle Scholar