Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:54:55.863Z Has data issue: false hasContentIssue false

Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions

Published online by Cambridge University Press:  14 November 2011

Massimo Grossi
Affiliation:
SISSA, Strada costiera 11, 34014 Trieste, Italy
Filomena Pacella
Affiliation:
Dipartimento di Matematica, Università di Roma “La Sapienza”, P. le A. Moro 2, 00185 Rome, Italy

Synopsis

In this paper we characterise the levels of the functional (0.3) at which the Palais-Smale condition fails in the Sobolev space V(Ω) defined below. From this result we deduce an existence theorem for positive solutions to the mixed boundary problem (0.1)–(0.2) under geometrical assumptions on the domain Ω and the part of the boundary of Ω where a Neumann condition is prescribed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aubin, T.. Equations differentielles nonlinéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 5 (1976), 269293.Google Scholar
2Bahri, A. and Coron, J. M.. On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Comm. Pure Appl. Math. XLI (1988), 253–294.Google Scholar
3Bahri, A. and Coron, J. M.. Sur une équation elliptique non linéaire avec l'exposant critique de Sobolev. C.R. Acad. Sci. Paris Sér. I 30 (1985), 345348.Google Scholar
4Brezis, H.. Analyse fonctionelle (Paris: Masson, 1983).Google Scholar
5Brezis, H.. Elliptic equations with limiting Sobolev exponents. The impact of topology. Comm. Pure Appl. Math. XXXIX (1986), 1739.CrossRefGoogle Scholar
6Brezis, H.. Nonlinear elliptic equations involving the critical Sobolev exponent—survey and perspectives. In Directions in Partial Differential Equations 1736 (New York: Academic Press, 1987).Google Scholar
7Brezis, H. and Lieb, E.. A relation between pointwise convergence of functions and convergence of functions. Proc. Amer. Math. Soc. 88 (1983), 486490.CrossRefGoogle Scholar
8Brezis, H. and Nirenberg, L.. A minimization problem with critical exponent and nonzero data (to appear).Google Scholar
9Brezis, H. and Nirenberg, L.. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. XXXVI (1983), 437477.CrossRefGoogle Scholar
10Brezis, H. and Coron, J. M.. Convergence of solutions of H—systems or how to blow bubbles. Arch. Mech. Anal. 89 (1985), 2156.CrossRefGoogle Scholar
11Coron, J. M.. Topologie et cas limite des injections de Sobolev. C.R. Acad. Sci. Paris Sér. I 299 (1984), 209212.Google Scholar
12Ding, W.. Positive solutions of δu + u (N+2)/(N−2) = 0 on contractible domains (to appear).Google Scholar
13Egnell, H., Pacella, F. and Tricarico, M.. Some remarks on Sobolov inequalities. Nonlinear Anal. 9 (1989), 763773.Google Scholar
14Esteban, M. J. and Lions, P. L.. Existence and non-existence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh Sect A 93 (1982), 114.Google Scholar
15Gidas, B.. Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic problems. In Nonlinear Partial Differential Equations in Engineering and Applied Science, eds R. Sternberg, A. Kalinowski and J. Papadakis (New York: Dekker, 1980).Google Scholar
16Grossi, M.. On some semilinear elliptic equations with critical nonlinearities and mixed boundary conditions. Rend. Mat. SER. VII 10 (1990).Google Scholar
17Hofer, H.. Variational and topological methods in partially ordered Hilbert space. Math. Ann. 261 (1982), 493514.Google Scholar
18Lions, P. L.. The concentration compactness principle in the calculus of variations. The limit case (part 1 and part 2). Riv. Mat. Iberoamericana 1 (1985), 145201; 45121.CrossRefGoogle Scholar
19Lions, P. L. and Pacella, F.. Isoperimetric inequalities for convex cones. Proc. Amer. Math. Soc. (to appear).Google Scholar
20Lions, P. L., Pacella, F. and Tricarico, M.. Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions. Indiana Univ. Math. J. 37 (1988), 301324.CrossRefGoogle Scholar
21Maz'ja, V. G.. Sobolev spaces (Berlin: Springer, 1985).CrossRefGoogle Scholar
22Pacella, F.. Some relative isoperimetric inequalities and applications to nonlinear problems. In Proceedings of the Meeting “Variational Problems”, Paris, June, 1988.Google Scholar
23Pacella, F. and Tricarico, M.. Symmetrization for a class of elliptic equations with mixed boundary conditions. Atti Sem. Mat. Fis. Univ. Modena XXXIV (1986), 7594.Google Scholar
24Passaseo, D.. Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains. Manuscripta Math. 65 (1989), 147166.CrossRefGoogle Scholar
25Pohozaev, S.. Eigenfunctions of the equation Δu + f(u) = 0. Soviet Math. Dokl. 6 (1965), 14081411.Google Scholar
26Struwe, M.. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187 (1984), 511517.Google Scholar
27Talenti, G.. Best constant in Sobolev inequalities. Ann. Mat. Pura Appl. 110 (1976), 353372.CrossRefGoogle Scholar