Published online by Cambridge University Press: 14 November 2011
Here the Riemann boundary value problem-well known in analytic function theory as the problem to find entire analytic functions having a prescribed jump across a given contour-is solved for solutions of a pseudoparabolic equation which is derived from the complex differential equation of generalized analytic function theory. The general solution is given by use of the generating pair of the corresponding class of generalized analytic functions which gives rise to a representation for special bounded solutions of the pseudoparabolic equation. These solutions are obtained by linear integral equations one of which is given by a development of the generalized fundamental kernels of generalized analytic functions and which leads to a Cauchy-type integral representation. The bounded solutions are needed to transform the general boundary value problem (of non-negative index) with arbitrary initial data into a homogeneous problem which can easily be solved by the Cauchy-type integral (if the index is zero).