Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T12:53:08.108Z Has data issue: false hasContentIssue false

Periodic trajectories in static space-times

Published online by Cambridge University Press:  14 November 2011

Carlo Greco
Affiliation:
Dipartimento di Matematica, Università degli Studi di Bari, Via G. Fortunato, 70125 Bari, Italy

Synopsis

Let R ×N equipped with the warped Lorentzian metric f2dt2 ⊕(− h), where (N, h) is a Riemannian manifold, and f: N → ]0, ∞[ is a smooth function. Then R × N is called a standard static space-time, and in this paper we look for non-trivial periodic trajectories on R × N for N compact.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alber, S. I.. On periodicity problems in the calculus of variations in the large. Amer. Math. Soc. Trans. 14 (1960), 107172; Uspekhi Mat. Nauk. 12 (1957), 57–124.Google Scholar
2Benci, V. and Fortunato, D.. Existence of geodesies for the Lorentz-metric of a stationary gravitational field. Ann. Inst. H. Poincaré, Anal. Non Linéaire (to appear).Google Scholar
3Benci, V. and Fortunato, D.. Periodic trajectories for the Lorentz-metric of a static gravitational field. Proceedings of “Variational Problems”, pp. 1318 (Paris, June 1988, to appear).Google Scholar
4Greco, C.. Periodic trajectories for a class of Lorentz-metrics of a time-dependent gravitational field (preprint, Università di Bari, 1989).CrossRefGoogle Scholar
5Klingenberg, W.. Lectures on Closed Geodesies. Grundlehren Math. Wiss., Vol. 230 (Berlin: Springer, 1978).CrossRefGoogle Scholar
6O'Neill, B.. Semi-Riemannian Geometry. With Applications to Relativity. Pure App. Math. 103 (New York: Academic Press, 1983).Google Scholar