Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T07:42:31.619Z Has data issue: false hasContentIssue false

On uniform asymptotic expansions of finite Laplace and Fourier integrals

Published online by Cambridge University Press:  14 November 2011

Kusum Soni
Affiliation:
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916, U.S.A.

Synopsis

A uniform asymptotic expansion of the Laplace integrals ℒ(f, s) with explicit remainder terms is given. This expansion is valid in the whole complex s−plane. In particular, for s = −ix, it provides the Fourier integral expansion.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Copson, E. T.. Asymptotic Expansions (London: Cambridge Univ. Press, 1965).CrossRefGoogle Scholar
2Bleistein, N. and Handelsman, R. A.. Asymptotic expansion of integrals (New York: Holt, Rinehart and Winston, 1975).Google Scholar
3Erdélyi, A.. Asymptotic representations of Fourier integrals and the method of stationary phase. SIAM J. Appl. Math. 3 (1955), 1727.CrossRefGoogle Scholar
4Erdélyi, A.. Asymptotic expansions of Fourier integrals involving logarithmic singularities. SIAM J. Appl. Math. 4 (1956), 3847.CrossRefGoogle Scholar
5Jones, D. S.. Asymptotic behavior of integrals. SIAM Rev. 14 (1972), 286317.CrossRefGoogle Scholar
6McKenna, J.. Note on asymptotic expansions of Fourier integrals involving logarithmic singularities. SIAM J. Appl. Math. 15 (1967), 810812.CrossRefGoogle Scholar
7Olver, F. W. J.. Error bounds for Laplace approximation for definite integrals. J. Approximation Theory 1 (1968), 293313.CrossRefGoogle Scholar
8Olver, F. W. J.. Error bounds for stationary phase approximation. SIAM J. Math. Anal. 5 (1974), 1929.CrossRefGoogle Scholar
9Olver, F. W. J.. Asympiofics and special functions (New York: Academic Press, 1974).Google Scholar