Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T16:23:53.483Z Has data issue: false hasContentIssue false

On the well-posedness and asymptotic behaviour of the generalized Korteweg–de Vries–Burgers equation

Published online by Cambridge University Press:  30 August 2018

F. A. Gallego
Affiliation:
Mathematics Department, Universidad Nacional de Colombia, Cra 27 No. 64-60, 170003 Manizales, Colombia ([email protected])
A. F. Pazoto
Affiliation:
Institute of Mathematics, Federal University of Rio de Janeiro, P.O. Box 68530, CEP 21945-970, Rio de Janeiro, RJ, Brazil ([email protected])

Abstract

In this paper we are concerned with the well-posedness and the exponential stabilization of the generalized Korteweg–de Vries–Burgers equation, posed on the whole real line, under the effect of a damping term. Both problems are investigated when the exponent p in the nonlinear term ranges over the interval [1, 5). We first prove the global well-posedness in Hs(ℝ) for 0 ≤ s ≤ 3 and 1 ≤ p < 2, and in H3(ℝ) when p ≥ 2. For 2 ≤ p < 5, we prove the existence of global solutions in the L2-setting. Then, by using multiplier techniques and interpolation theory, the exponential stabilization is obtained with an indefinite damping term and 1 ≤ p < 2. Under the effect of a localized damping term the result is obtained when 2 ≤ p < 5. Combining multiplier techniques and compactness arguments, we show that the problem of exponential decay is reduced to proving the unique continuation property of weak solutions. Here, the unique continuation is obtained via the usual Carleman estimate.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)