Article contents
On the optimization of the first weighted eigenvalue
Published online by Cambridge University Press: 12 September 2022
Abstract
For $N\geq 2$, a bounded smooth domain $\Omega$
in $\mathbb {R}^{N}$
, and $g_0,\, V_0 \in L^{1}_{loc}(\Omega )$
, we study the optimization of the first eigenvalue for the following weighted eigenvalue problem:
and $V$
vary over the rearrangement classes of $g_0$
and $V_0$
, respectively. We prove the existence of a minimizing pair $(\underline {g},\,\underline {V})$
and a maximizing pair $(\overline {g},\,\overline {V})$
for $g_0$
and $V_0$
lying in certain Lebesgue spaces. We obtain various qualitative properties such as polarization invariance, Steiner symmetry of the minimizers as well as the associated eigenfunctions for the case $p=2$
. For annular domains, we prove that the minimizers and the corresponding eigenfunctions possess the foliated Schwarz symmetry.
Keywords
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 153 , Issue 6 , December 2023 , pp. 1777 - 1804
- Copyright
- Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231108120848962-0360:S0308210522000609:S0308210522000609_inline1143.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231108120848962-0360:S0308210522000609:S0308210522000609_inline1144.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231108120848962-0360:S0308210522000609:S0308210522000609_inline1145.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231108120848962-0360:S0308210522000609:S0308210522000609_inline1146.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231108120848962-0360:S0308210522000609:S0308210522000609_inline1147.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231108120848962-0360:S0308210522000609:S0308210522000609_inline1148.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231108120848962-0360:S0308210522000609:S0308210522000609_inline1149.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231108120848962-0360:S0308210522000609:S0308210522000609_inline1150.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231108120848962-0360:S0308210522000609:S0308210522000609_inline1151.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231108120848962-0360:S0308210522000609:S0308210522000609_inline1152.png?pub-status=live)
- 3
- Cited by