Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T20:52:23.965Z Has data issue: false hasContentIssue false

On the number of conjugacy classes of π-elements in a finite group*

Published online by Cambridge University Press:  14 November 2011

Antonio Vera López
Affiliation:
Departamento de Matemáticas, Facultad de Ciencias, Universidad del País Vasco, Apartado 644, Bilbao, Spain
Ma Concepción Larrea
Affiliation:
Departamento de Matemáticas, Facultad de Económicas, Universidad del País Vasco, Apartado 644, Bilbao, Spain

Synopsis

In this paper, the number of conjugacy classes of π-elements (respectively non π-elements) of G is analysed in terras of the corresponding numbers of G/N and N, for each N normal subgroup of G. In particular, we generalise well-known results of P. X. Gallagher and C. H. Sah.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Gallagher, P. X.. The number of conjugacy classes in a finite group. Math. Z. 118 (1970), 175179.CrossRefGoogle Scholar
2Sah, C. H.. Automorphisms of finite groups. J. Algebra 10 (1968), 4768.CrossRefGoogle Scholar
3Vera-López, A.. Arithmetical conditions on the conjugacy vector of a finite group. Israel J. Math. 56 (1986), 179187.CrossRefGoogle Scholar