Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T15:56:22.033Z Has data issue: false hasContentIssue false

On the discrete approximation of eigenvalue problems with holomorphic parameter dependence

Published online by Cambridge University Press:  14 February 2012

Hansgeorg Jeggle
Affiliation:
Fachbereich Mathematik der Technischen Universität Berlin
Wolfgang Wendland
Affiliation:
Fachbereich Mathematik der Technischen Hochschule Darmstadt

Extract

Here eigenvalue problems A(λ)u = 0 and their approximations Ai(λ)νi = 0 are studied where the densely denned closed semi-Fredholm operators A and Ai depend holomorphically on the parameter λ. Two different kinds of approximations are established. One is based on a generalisation of the spectral projection and the other on a suitable linearisation of the problem. To this end generalised eigenvectors and suitable product spaces are introduced which provide a representation formula for the principal part of A -1 and A -1, respectively, in the neighbourhood of poles. The convergence of the methods is shown in the framework of discrete convergence theory. The results generalise the corresponding results for linearly dependent A, Ai in two directions: both methods are available for arbitrary holomorphic dependence on the parameter λ, and the first method provides convergent approximations to the whole generalised eigenspace which works also in cases of linear parameter dependence when the usual method fails.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Andrew, A. L. Eigenvalue problems with nonlinear dependence on the eigenvalue parameter. A bibliography. Tech. Report. Dept. Math. La Trobe Univ. (1974).Google Scholar
2Anselone, P. M.Collectively compact operator approximation theory (New Jersey: Prentice-Hall 1971).Google Scholar
3Bart, H.Poles of the resolvent of an operator function. Proc. Roy. Irish Acad. Sect. A 1A, (1974), 169184.Google Scholar
4Bart, H. Spectral properties of commutative holomorphic operator functions. (Vortrag auf der Tagung “Störungstheorie und Operatorfunktionen” v. 25. 1. bis 1. 2. 1975 im Mathematischen Forschungsinstitut Oberwolfach, Germany.)Google Scholar
5Bart, H., Kaashoek, M. A. and Lay, D. C.Stability properties of finite meromorphic operator functions (I, II, III). Nederl. Akad. Wetensch. Proc. Ser A 77 (1974), 217259.CrossRefGoogle Scholar
6Friedman, A. and Shinbrot, M.Nonlinear eigenvalue problems. Acta Math. 121 (1968), 77125.CrossRefGoogle Scholar
7Gohberg, I. C. and Krein, M. G.Introduction to the theory of linear nonselfadjoint operators. Amer. Math. Soc. Transl. 18 (1969)Google Scholar
8Gramsch, B.Meromorphie in der Theorie der Fredholmoperatoren mit Anwendungen auf elliptische Differentialoperatoren. Math. Ann. 188 (1970), 97112.CrossRefGoogle Scholar
9Grigorieff, R. D.Approximation von Eigenwertproblemen und Gleichungen zweiter Art in Hilbertschen Raumen. Math. Ann. 183 (1969), 4577.CrossRefGoogle Scholar
10Grigorieff, R. D.Die Konvergenz des Rand-und Eigenwertproblems linearer gewohnlicher Differentialgleichungen. Numer. Math. 15 (1970), 1348.CrossRefGoogle Scholar
11Grigorieff, R. D.Uber die Fredholm-Alternative bei linearen approximationsregularen Opera-toren. Applicable Anal. 2 (1972), 217227.CrossRefGoogle Scholar
12Grigorieff, R. D.Diskrete Approximation von Eigenwertproblemen I: Qualitative Konvergenz. Numer. Math. 24 (1975), 355374.CrossRefGoogle Scholar
13Grigorieff, R. D.Diskrete Approximation von Eigenwertproblemen II: Konvergenzordnung. Numer. Math. 24 (1975), 415433.CrossRefGoogle Scholar
14Grigorieff, R. D.Diskrete Approximation von Eigenwertproblemen III: Asymptotische Entwicklungen. Numer. Math. 25 (1975), 7997.CrossRefGoogle Scholar
15Grigorieff, R. D. and , H. Jeggle.Quadraturformelmethoden zur näherungsweisen Lösung von nichtlinearen Eigenwertaufgaben bei Integralgleichungen. Z. Angew. Math. Mech. 52 (1972), 204206.Google Scholar
16Grigorieff, R. D. and Jeggle, H.Approximation von Eigenwertproblemen bei nichtlinearer Parameterabhängigkeit. Manuscripta Math. 10 (1973), 245271.CrossRefGoogle Scholar
17Haf, H.Zur Theorie parameterabhängiger Operatorgleichungen (Stuttgart Tech. Hochsch., Dissertation, 1968).Google Scholar
18Hildebrandt, S.Über die Lösung nichtlinearer Eigenwertaufgaben mit dem Galerkinverfahren. Math. Z. 101 (1967), 255264.CrossRefGoogle Scholar
19Jeggle, H.Diskrete Approximation von Eigenwertproblemen. (Darmstadt: Habilitationsschrift, 1971).Google Scholar
20Jeggle, H.Über die Approximation von linearen Gleichungen zweiter Art und Eigenwert-problemen in Banach-Räumen. Math. Z. VIA (1972), 319342.CrossRefGoogle Scholar
21Jorgens, K.Lineare Integraloperatoren (Stuttgart: Teubner, 1970).CrossRefGoogle Scholar
22Kato, T.Perturbation theory for linear operators (Berlin: Springer Verlag, 1966).Google Scholar
23Karma, O. O.Asymptotic error estimates for the approximate eigenvalue problem of holomorphic Fredholm operator functions. U.S.S.R. Computational Math, and Math. Phys. 11 (1973), 2031.CrossRefGoogle Scholar
24Kremer, M.Fredholmtheorie in dualen Paaren. Preprint Fachbereich Math. Tech. Hochsch. Darmstadt 117 (1974)Google Scholar
25Polskij, N. I.Uber die Konvergenz der Methode von B. G. Galerkin. Veroff. Ukrain. Akad. Wiss. 6 (1949), 712.Google Scholar
26Reinhardt, J.Nonlinear mappings in metric discrete limit spaces and their topological properties. Collect. Math., to appear.Google Scholar
27Sarreither, P.Transformationseigenschaften endlicher Ketten und allgemeine Verzweigung-saussagen. Math. Scand. 35 (1974), 115128.CrossRefGoogle Scholar
28Steinberg, S.Meromorphic families of compact operators. Arch. Rational Mech. Anal. 31 (1968), 372379.CrossRefGoogle Scholar
29Stummel, F.Elliptische Differenzenoperatoren unter Dirichletrandbedingungen. Math. Z. 97 (1967), 169211.CrossRefGoogle Scholar
30Stummel, F.Diskrete Konvergenz linearer Operatoren I. Math. Ann. 190 (1970), 4592.CrossRefGoogle Scholar
31Stummel, F.Diskrete Konvergenz linearer Operatoren II. Math. Z. 120 (1971), 231264.CrossRefGoogle Scholar
32Stummel, F.Diskrete Konvergenz linearer Operatoren III. Int. Ser. Num. Math. 20 (1972), 196216.Google Scholar
33Stummel, F.Perturbation of domains in elliptic boundary problems. In Proc. Conf. Applications of Methods of Functional Analysis to Problems of Mechanics, Marseilles, September 1975, to appear.CrossRefGoogle Scholar
34Wendland, W.Bemerkungen über die Fredholmschen Sätze. Methoden Verfahren Math. Phys. 3 (1970), 141176 (Mannheim: BI Hochschultaschenbucher, 722/722a).Google Scholar