Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T21:12:20.220Z Has data issue: false hasContentIssue false

On the behaviour of eigenfunction expansions in the complex domain

Published online by Cambridge University Press:  14 November 2011

Gerhard Freiling
Affiliation:
Universität-Gesamthochschule-Duisburg, Fachbereich 11 /Mathematik, Lotharstr. 65, 4100 Duisburg 1, Germany

Synopsis

By using asymptotic estimates for the eigenvalues and eigenfunctions or irregular boundary value problems, we state necessary conditions for the pointwise convergence and for the divergence of the corresponding eigenfunction expansions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Collatz, L.. Eigenwertaufgaben mit technischen Anwendungen (Leipzig: Geest und Porfig, 1949).Google Scholar
2Eberhard, W.. Die Entwicklungen nach Eigenfunktionen irregulärer Eigenwertprobleme mit zerfallenden Randbedingungen. Math. Z. 86 (1964), 205214.CrossRefGoogle Scholar
3Eberhard, W.. Die Entwicklungen nach Eigenfunktionen irregulärer Eigenwertprobleme mit zerfallenden Randbedingungen II. Math. Z. 90 (1965), 126137.CrossRefGoogle Scholar
4Eberhard, W.. Zur Vollständigkeit des Biorthogonalsystems von Eigenfunktionen irregulärer Eigenwertprobleme. Math. Z. 146 (1976), 213221.CrossRefGoogle Scholar
5Flax, A. H.. Aerolastic problems of supersonic speed. Proc. Second International Aeronautics Conference, pp. 322360 (New York: International Aeronautical Society, 1949).Google Scholar
6Freiling, G.. Necessary conditions for the L2-convergence of series in eigenfunctions of irregular eigenvalue problems. J. Math. Anal. Appl. 114 (1986), 503511.CrossRefGoogle Scholar
7Hopkins, J. W.. Some convergent developments associated with irregular boundary conditions. Trans. Arner. Math. Soc. 20 (1919), 245259.CrossRefGoogle Scholar
8Hromov, A. P.. Expansion in the characteristic functions of ordinary linear differential operators with nonregular decomposing boundary conditions. Mat. Sb. (N.S.) 70 (112), (1966), 310329.Google Scholar
9Hromov, A. P.. Differential operator with irregular splitting boundary conditions. Math. Notes 19 (1976), 451456.CrossRefGoogle Scholar
10Jackson, D.. Expansion problems with irregular boundary conditions. Proc. Am. Acad. 51 (1916), 383417.CrossRefGoogle Scholar
11Langer, R. E.. The boundary problem of an ordinary linear differential system in the complex domain. Trans. Amer. Math. Soc. 46 (1939), 151190.CrossRefGoogle Scholar
12Mikhailov, V. P.. On Riesz bases in L 2[0, 1]. Soviet Math. Dokl. 3 (1962), 851855.Google Scholar
13Naimark, M. A.. Linear differential operators, Part I (New York: Ungar, 1967).Google Scholar
14Seifert, G.. A third order irregular boundary value problem and the associated series. Pacific J. Math. 2 (1952), 395406.CrossRefGoogle Scholar
15Shkalikov, A. A.. The completeness of eigenfunctions and associated functions of an ordinary differential operator with irregular-separated boundary conditions. Functional Anal. Appl. 10 (1976), 305316.CrossRefGoogle Scholar
16Shkalikov, A. A.. On the basis problem of the eigenfunctions on an ordinary differential operator. Russian Math. Surveys 34 (1979), 249250.CrossRefGoogle Scholar
17Stone, M. H.. A comparison of the series of Fourier and Birkhoff. Trans. Amer. Math. Soc. 28 (1926), 695761.CrossRefGoogle Scholar
18Ward, L. E.. A third order irregular boundary value problem and the associated series. Trans. Amer. Math. Soc. 34 (1932), 417434.CrossRefGoogle Scholar
19Ward, L. E.. A third-order irregular boundary value problem and the associated series. Amer. J. Math. 57 (1935), 345362.CrossRefGoogle Scholar
20Wolter, M.. Notwendige und hinreichende Kriterien fiir die Entwickelbarkeit von Funktionen in gleichmäβig konvergente Fourierreihen nach den Eigenfunktionen einer Klasse N-irregulärer Eigenwertprobleme mit zerfallenden Randbedingungen. Dissertation, Marburg/Lahn, 1978.Google Scholar