Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-04-27T18:29:04.767Z Has data issue: false hasContentIssue false

On Riemann–Hilbert problem and multiple high-order pole solutions to the cubic Camassa–Holm equation

Published online by Cambridge University Press:  25 November 2024

Wen-Yu Zhou
Affiliation:
School of Mathematics, China University of Mining and Technology, Xuzhou 221116, People’s Republic of China ([email protected])
Shou-Fu Tian
Affiliation:
School of Mathematics, China University of Mining and Technology, Xuzhou 221116, People’s Republic of China ([email protected], [email protected]) (corresponding author)
Zhi-Qiang Li
Affiliation:
School of Mathematics, China University of Mining and Technology, Xuzhou 221116, People’s Republic of China ([email protected])

Abstract

In this work, the Riemann–Hilbert (RH) problem is employed to study the multiple high-order pole solutions of the cubic Camassa–Holm (cCH) equation with the term characterizing the effect of linear dispersion under zero boundary conditions and nonzero boundary conditions. Under the reflectionless situation, we generalize the residue theorem and obtain the multiple high-order pole solutions of cCH equation by solving an algebraic system. During the process of establishing the solution of RH problem, to simplify the calculations involving the implicitly expressed of variables (x, t) in the solution, we introduce a new scale (y, t) to ensure the solution of RH problem is explicitly expressed with respect to it. Finally, the exact solutions are obtained for cases involving one high-order pole and N high-order poles.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

All authors contributed equally as the first author to this work.

References

Ablowitz, M. J., Feng, B. F., Luo, X. D. and Musslimani, Z. H.. Inverse scattering transform for the nonlocal reverse space-time nonlinear Schrödinger equation. Theor. Math. Phys. 196 (2018), 12411267.CrossRefGoogle Scholar
Ablowitz, M. J., Kaup, D. J., Newell, A. C. and Segur, H.. Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31 (1973), 125127.CrossRefGoogle Scholar
Alber, M. S., Camassa, R., Fedorov, Y. N., Holm, D. D. and Marsden, J. E.. The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE’s of shallow water and Dym type. Commun. Math. Phys. 221 (2001), 197227.CrossRefGoogle Scholar
Biondini, G. and Kovačič, G.. Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55 (2014), .CrossRefGoogle Scholar
Boutet de Monvel, A., Karpenko, I. and Shepelsky, D.. A Riemann-Hilbert approach to the modified Camassa-Holm equation with nonzero boundary conditions. J. Math. Phys. 61 (2020), .CrossRefGoogle Scholar
Boutet de Monvel, A. and Shepelsky, D.. Riemann-Hilbert approach for the Camassa-Holm equation on the line. C. R. Math. 343 (2006), 627632.CrossRefGoogle Scholar
Boutet de Monvel, A. and Shepelsky, D.. Riemann-Hilbert problem in the inverse scattering for the Camassa-Holm equation on the line. Math. Sci. Inst. Publ. 55 (2007), 5375.Google Scholar
Camassa, R. and Holm, D. D.. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71 (1993), 16611664.CrossRefGoogle ScholarPubMed
Chang, X. K. and Szmigielski, J.. Lax integrability and the peakon problem for the modified Camassa-Holm equation. Commun. Math. Phys. 358 (2018), 295341.CrossRefGoogle Scholar
Chu, F. Y. F. and Scott, A. C.. Inverse scattering transform for wave-wave scattering. Phys. Rev. A. 12 (1975), 20602064.CrossRefGoogle Scholar
Constantin, A.. The Hamiltonian structure of the Camassa-Holm equation. Exposition. Math. 15 (1997), 5358.Google Scholar
Constantin, A., Gerdjikov, V. S. and Ivanov, R.I.. Inverse scattering transform for the Camassa-Holm equation. Inverse Probl. 22 (2006), 21972207.CrossRefGoogle Scholar
Constantin, A. and McKean, H. P.. A shallow water equation on the circle. Comm. Pure Appl. Math. 52 (1999), 949982.3.0.CO;2-D>CrossRefGoogle Scholar
Fokas, A. S.. On a class of physically important integrable equation. Phys. D. 87 (1995), 145150.CrossRefGoogle Scholar
Fu, Y., Gui, G. L., Liu, Y. and Qu, C. Z.. On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity. J. Differ. Equ. 255 (2013), 19051938.CrossRefGoogle Scholar
Fuchssteiner, B.. The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems. Progr. Theoret. Phys. 68 (1982), 10821104.CrossRefGoogle Scholar
Fuchssteiner, B.. Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. Phys. D. 95 (1996), 229243.CrossRefGoogle Scholar
Górka, P. and Reyes, E. G.. The modified Camassa-Holm equation. Int. Math. Res. Not. 2011 (2011), 26172649.Google Scholar
Gao, Y., Li, L. and Liu, J. G.. Patched peakon weak solutions of the modified Camassa-Holm equation. Phys. D. 390 (2019), 1535.CrossRefGoogle Scholar
Gardner, C. S., Greene, J. M., Kruskal, M. D. and Miura, R. M.. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19 (1967), 10951097.CrossRefGoogle Scholar
Gui, G. L., Liu, Y., Olver, P. J. and Qu, C. Z.. Wave-breaking and peakons for a modified Camassa-Holm equation. Comm. Math. Phys. 319 (2013), 731759.CrossRefGoogle Scholar
Guo, Z. H., Liu, X. C., Liu, X. X. and Qu, C. Z.. Stability of peakons for the generalized modified Camassa-Holm equation. J. Differ. Equ. 266 (2019), 77497779.CrossRefGoogle Scholar
Hu, H. C., Yin, W. and Wu, H. X.. Bilinear equations and new multi-soliton solution for the modified Camassa-Holm equation. Appl. Math. Lett. 59 (2018), 1823.CrossRefGoogle Scholar
Ji, J. L. and Zhu, Z. N.. On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux transformation and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 42 (2017), 699708.CrossRefGoogle Scholar
Karpenko, I., Shepelsky, D., and Teschl, G.. A Riemann-Hilbert approach to the modified Camassa-Holm equation with step-like boundary conditions. Monatsh. Math. 201 (2022), 127–172.Google Scholar
Liu, X. C., Liu, Y. and Qu, C. Z.. Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation. Adv. Math. 255 (2014), 137.CrossRefGoogle Scholar
Luo, Z. N., Qiao, Z. J. and Yin, Z. Y.. On the Cauchy problem for a modified Camassa-Holm equation. Monatsh. Math. 193 (2020), 857877.CrossRefGoogle Scholar
Ma, W. X.. Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system. J. Geom. Phys. 132 (2018), 4554.CrossRefGoogle Scholar
Ma, W. X.. Riemann-Hilbert problems and soliton solutions of nonlocal real reverse-spacetime mKdV equations. J. Math. Anal. Appl. 498 (2021), .CrossRefGoogle Scholar
Matsuno, Y.. Bäcklund transformation and smooth multisoliton solutions for a modified Camassa-Holm equation with cubic nonlinearity. J. Math. Phys. 54 (2013), .CrossRefGoogle Scholar
Matsuno, Y.. Smooth and singular multisoliton solutions of a modified Camassa-Holm equation with cubic nonlinearity and linear dispersion. J. Phys. A: Math. Theor. 47 (2014), .CrossRefGoogle Scholar
Novikov, V.. Generalizations of the Camassa-Holm equation. J. Phys. A: Math. Theor. 42 (2009), .CrossRefGoogle Scholar
Olver, P. J. and Rosenau, P.. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53 (1996), 19001906.CrossRefGoogle ScholarPubMed
Qiao, Z. J. and Li, X. Q.. An integrable equation with nonsmooth solitons. Theor. Math. Phys. 267 (2011), 584589.CrossRefGoogle Scholar
Qiao, Z. J.. The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold. Commun. Math. Phys. 239 (2003), 309341.CrossRefGoogle Scholar
Qiao, Z. J.. A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47 (2006), 16611664.CrossRefGoogle Scholar
Qiao, Z. J. and Zhang, G. P.. On peaked and smooth solitons for the Camassa-Holm equation. Europhys. Lett. 73 (2006), 657663.CrossRefGoogle Scholar
Sheng, H. H., Yu, G. F. and Feng, B. F.. An integrable semi-discretization of the modified Camassa-Holm equation with linear dispersion term. Stud. Appl. Math. 149 (2022), 230265.CrossRefGoogle Scholar
Su, C. H. and Gardner, C. H.. Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation. J. Math. Phys. 10 (1969), 536539.CrossRefGoogle Scholar
Tian, S. F.. Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262 (2017), 506558.CrossRefGoogle Scholar
Tian, S. F.. Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on the half-line via the Fokas method. J. Phys. A: Math. Theor. 50 (2017), .CrossRefGoogle Scholar
Wang, Z. and Liu, Y.. Stability of smooth multi-solitons for the Camassa-Holm equation. Calc. Var. 61 (2022), 5186.CrossRefGoogle Scholar
Wang, Z. and Qiao, Z. J.. Riemann-Hilbert approach for the FQXL model: a generalized Camassa-Holm equation with cubic and quadratic nonlinearity. J. Math. Phys. 57 (2016), .CrossRefGoogle Scholar
Xia, B. Q., Qiao, Z. J. and Li, J. B.. An integrable system with peakon, complex peakon, weak kink, and kink-peakon interactional solutions. Commun. Nonlinear Sci. Numer. Simul. 63 (2018), 292306.CrossRefGoogle Scholar
Xia, B. Q., Zhou, R. G. and Qiao, Z. J.. Darboux transformation and multi-soliton solutions of the Camassa-Holm equation and modified Camassa-Holm equation. J. Math. Phys. 57 (2016), 16611664.CrossRefGoogle Scholar
Xu, J. and Fan, E. G.. Long-time asyptotics behavior for the integrable modified Camassa-Holm equation with cubic nonlinearity. arXiv:1911.12554.Google Scholar
Yang, Y. L. and Fan, E. G.. Riemann-Hilbert approach to the modified nonlinear Schrödinger equation with non-vanishing asymptotic boundary conditions. Phys. D 417 (2021), .CrossRefGoogle Scholar
Yang, Y. L. and Fan, E. G.. On the long-time asyptotics of the modified Camassa-Holm equation in space-time solitonic regions. Adv. Math. 402 (2022), .CrossRefGoogle Scholar
Zakharov, V. E. and Shabat, A. B.. Exact theory of dimensional self-focusing and one dimensional self modulation of waves in nonlinearmedia. Sov. Phys. JETP 34 (1972), 118134.Google Scholar
Zhang, Y. S., Qiu, D. Q. and He, J. S.. Explicit Nth order solutions of Fokas-Lenells equation based on revised Riemann-Hilbert approach. J. Math. Phys. 64 (2023), .CrossRefGoogle Scholar
Zhang, Z. C. and Fan, E. G.. Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov-Ivanov equation under the zero/nonzero background. Z. Angew. Math. Phys. 72 (2021), .CrossRefGoogle Scholar
Zhu, J. Y. and Chen, Y.. High-order soliton matrix for the third-order flow equation of the Gerdjikov-Ivanov hierarchy through the Riemann-Hilbert method. arXiv: 2105.08412.Google Scholar