Article contents
On quotient modules of H2(𝔻n): essential normality and boundary representations
Published online by Cambridge University Press: 31 January 2019
Abstract
Let 𝔻n be the open unit polydisc in ℂn, $n \ges 1$, and let H2(𝔻n) be the Hardy space over 𝔻n. For
$n\ges 3$, we show that if θ ∈ H∞(𝔻n) is an inner function, then the n-tuple of commuting operators
$(C_{z_1}, \ldots , C_{z_n})$ on the Beurling type quotient module
${\cal Q}_{\theta }$ is not essentially normal, where
$${\rm {\cal Q}}_\theta = H^2({\rm {\open D}}^n)/\theta H^2({\rm {\open D}}^n)\quad {\rm and}\quad C_{z_j} = P_{{\rm {\cal Q}}_\theta }M_{z_j}\vert_{{\rm {\cal Q}}_\theta }\quad (j = 1, \ldots ,n).$$
Keywords
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 150 , Issue 3 , June 2020 , pp. 1339 - 1359
- Copyright
- Copyright © 2019 The Royal Society of Edinburgh
References

- 4
- Cited by