Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T23:48:00.380Z Has data issue: false hasContentIssue false

On properties of effective topological complexity and effective Lusternik–Schnirelmann category

Published online by Cambridge University Press:  22 January 2025

Zbigniew Błaszczyk
Affiliation:
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland ([email protected])
Arturo Espinosa Baro*
Affiliation:
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland ([email protected], [email protected]) (Corresponding author)
Antonio Viruel
Affiliation:
Departamento de Álgebra, Geometria y Topologia, Universidad de Málaga, Campus de Teatinos, s/n, 29071 Málaga, Spain ([email protected])
*
*Corresponding author.

Abstract

The notion of effective topological complexity, introduced by Błaszczyk and Kaluba, deals with using group actions in the configuration space in order to reduce the complexity of the motion planning algorithm. In this article, we focus on studying several properties of this notion of topological complexity. We introduce a notion of effective LS category which mimics the behaviour the usual LS category has in the non-effective setting. We use it to investigate the relationship between these effective invariants and the orbit map with respect to the group action, and we give numerous examples. Additionally, we investigate non-vanishing criteria based on a cohomological dimension bound of the saturated diagonal.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, A. and Colman, H.. Equivariant topological complexities. Topological Complexity and Related Topics Contemp. Math., Vol.702, (Amer. Math. Soc., Providence, RI, 2018).Google Scholar
Balzer, E. and Torres-Giese, E.. Sequential motion planning assisted by group actions. arXiv:2110.15894, 2021.Google Scholar
Berstein, I. and Ganea, T.. The category of a map and a cohomology class. Fund. Math. 50 (1962), 265279.CrossRefGoogle Scholar
Błaszczyk, Z. and Kaluba, M.. On equivariant and invariant topological complexity of smooth $\mathbb{Z}_p$-spheres. Proc. Amer. Math. Soc. 145 (2017), 40754086.CrossRefGoogle Scholar
Błaszczyk, Z. and Kaluba, M.. Effective topological complexity of spaces with symmetries. Publ. Mat. 62 (2018), 5574.CrossRefGoogle Scholar
Bredon, G. E.. Introduction to Compact Transformation groups (Academic Press, New York-London, 1972).Google Scholar
Cadavid-Aguilar, N. and González, J.. Effective topological complexity of orientable-surface groups. Top. Appl. 290 (2021), .CrossRefGoogle Scholar
Cadavid-Aguilar, N., González, J., Gutiérrez, B., and Ipanaque-Zapata, C. A.. Effectual topological complexity. J. Topol. Anal. 16 01 (2024), 5370.CrossRefGoogle Scholar
Colman, H. and Grant, M.. Equivariant topological complexity. Algebr. Geom. Topol. 12 (2012), 22992316.CrossRefGoogle Scholar
Cornea, O., Lupton, G., Oprea, J. and Tanré, D.. Lusternik-Schnirelmann category. Mathematical Surveys and Monographs., Vol.103 (American Mathematical Society, Providence, RI, 2003).Google Scholar
Dranishnikov, A. N.. On topological complexity of twisted products. Topol. Appl. 179 (2015), 7480.CrossRefGoogle Scholar
Dundas, B.I.. A Short Course in Differential Topology. Cambridge Mathematical Textbooks (Cambridge University Press, 2018).CrossRefGoogle Scholar
Farber, M.. Topological complexity of motion planning. Discrete Comput. Geom. 29 (2003), 211221.CrossRefGoogle Scholar
Farber, M.. Instabilities of robot motion. Topol. Appl. 140 (2004), 245266.CrossRefGoogle Scholar
Farber, M.. Invitation to Topological Robotics Zurich Lectures in Advanced Mathematics. Vol.8 (European Mathematical Society, 2008).CrossRefGoogle Scholar
Farber, M., Tabachnikov, S. and Yuzvinsky, S.. Topological robotics: motion planning in projective spaces. Int. Math. Res. Not. 34 (2003), 18531870.CrossRefGoogle Scholar
Grant, M.. Topological complexity, fibrations and symmetry. Topol. Appl. 159 (2012), 8897.CrossRefGoogle Scholar
Grant, M.. Equivariant topological complexities. Topology and AI: Topological Aspects of Algorithms for Autonomous motion EMS Series in Industrial and Applied Mathematics, Vol.4, (Institut für Mathematik Technische Universität Berlin, Germany: EMS Press, 2024).CrossRefGoogle Scholar
Hall, B.. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction Graduate Texts in Mathematics. Vol.222 (Springer, 2015).CrossRefGoogle Scholar
Hatcher, A.. Algebraic Topology (Cambridge University Press, 2002).Google Scholar
Iwase, N., Mimura, M. and Nishimoto, T.. Lusternik–Schnirelmann category of non-simply connected compact simple Lie groups. Topol. Appl. 150 (2005), 111123.CrossRefGoogle Scholar
Jaworowski, J.. The index of free circle actions in lens spaces. Janos Bolyai Mathematical Society 8th International Topology Conference, 9–15 August 1998, Gyula, Hungary, Topol. Appl. Vol.123, (2002).CrossRefGoogle Scholar
Lee, J. M.. Introduction to Smooth Manifolds Graduate Texts in Mathematics. 2nd revised ed, Vol.218 (Springer, New York, NY, 2012).CrossRefGoogle Scholar
Lubawski, W. and Marzantowicz, W.. Invariant topological complexity. Bull. London Math. Soc. 47 (2014), 101117.CrossRefGoogle Scholar
Lupton, G. and Scherer, J.. Topological complexity of H-spaces. Proc. Amer. Math. Soc. 141 (2013), 18271838.CrossRefGoogle Scholar
Mescher, S.. Oriented robot motion planning in Riemannian manifolds. Topol. Appl. 258 (2019), 120.CrossRefGoogle Scholar
Pavešić, P.. Topological complexity of real Grassmannians. Proc. R. Soc. Edinburgh A. 151 (2021), .CrossRefGoogle Scholar
Rees, E.. Multiplications on projective spaces. Michigan Math. J. 16 (1969), 297301.CrossRefGoogle Scholar
Schwarz, A.. The genus of a fiber space. Amer. Math. Soc. Transl. 55 (1966), 49140.Google Scholar
Serre, J. P.. Homologie singulière des espaces fibrés. Ann. of Math. 54 (1951), 425505.CrossRefGoogle Scholar