Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T20:28:52.408Z Has data issue: false hasContentIssue false

On linear theory of heat conduction in materials with memory. Existence and uniqueness theorems for the final value problem

Published online by Cambridge University Press:  14 February 2012

H. Grabmüller
Affiliation:
Fachbereich Mathematik der Technischen Hochschule, Darmstadt

Synopsis

An improperly posed problem is studied for a linear partial integro-differential equation of convolution type on the semi-axis. The problem originates from a generalised process of heat conduction in materials with fading memory, where the temperature of the material has to be determined for prescribed homogeneous boundary conditions and for a given final temperature distribution. By using eigenfunctions of the n-dimensional Laplacian, the problem is reduced to a family of equivalent initial-value problems for ordinary integro-differential equations; the latter are treated by the method of factorisation in a suitable function algebra. Sufficient conditions for the existence and uniqueness of solutions to the original problem are obtained in terms of the solvability conditions of the reduced problems. The whole analysis is performed simultaneously in a broad variety of spaces consisting of functions with an exponential growth rate (in the time variable) at infinity. One of the main advantages in the present approach is that solutions, if they exist, can always be computed explicitly.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bochner, S.. Vorlesungen über Fouriersche Integrale (New York: Chelsea, 1948).Google Scholar
2Bramble, J. H. and Thomee, V.. Semi-discrete least squares methods for a parabolic boundary value problem. Math. Comp. 26 (1972), 633648.Google Scholar
3Buzbee, B. L. and Carasso, A.. On the numerical computation of parabolic problems for preceding times. Math. Comp. 27 (1973), 237266.CrossRefGoogle Scholar
4Carasso, A.. Error bounds in the final value problem for the heat equation. SIAMJ. Math. Anal., to appear.Google Scholar
5Doetsch, G.. Probleme aus der Theorie der Wärmeleitung. Dritte Mitteilung: Der lineare Wärmeleiter mit beliebiger Anfangstemperatur. Die zeitliche Fortsetzung des Wärmezustandes. Math. Z. 25 (1926), 608626.CrossRefGoogle Scholar
6Doetsch, G.. Zerlegung einer Funktion in GauBsche Fehlerkurven und zeitliche Zuriickverfolgung eines Temperaturzustandes. Math. Z. 41 (1936), 283318.CrossRefGoogle Scholar
7Finn, J. M. and Wheeler, L. T.. Wave propagation aspects of the generalized theory of heat conduction. Z. Angew. Math. Phys. 23 (1972), 927940.CrossRefGoogle Scholar
8Gerlach, E.. Zur Theorie einer Klasse von Integrodifferentialgleichungen (Berlin: Dissertation, 1969).Google Scholar
9Grabmüller, H.. Über die Lösbarkeit einer Integrodifferentialgleichung aus der Theorie der Wärmeleitung. In Methoden und Verfahren der Mathematischen Physik, Eds Brosowsk, B.. Martensen, E.. 10, 117137 (Mannheim: Bibl. Institut, 1973).Google Scholar
10Gurtin, M. E. and Pipkin, A. C.. A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal. 31 (1968), 113126.CrossRefGoogle Scholar
11Herrmann, R. P. and Nachlinger, R. R.. A theorem on the uniqueness of solutions in nonlinear heat conduction. Quart. Appl. Math. 32 (1974), 329332.CrossRefGoogle Scholar
12Herrmann, R. P. and Nachlinger, R. R.. On uniqueness and wave propagation in nonlinear heat conductors with memory. J. Math. Anal. Appl. 50 (1975), 530–547.CrossRefGoogle Scholar
13Hille, E.. Phillips, R. S.. Functional analysis and semi-groups (Providence: Amer. Math. Soc., 1957).Google Scholar
14Krein, M. G.. Integral equations of a half line with kernel depending upon the difference of the arguments. Uspehi Mat. Nauk 13 (1958), 3120, and Amer. Math. Soc. Transl. 22 (1962), 163–288.Google Scholar
15Kremer, M.. Über ein Anfangsrandwertproblem aus der Theorie der Wärmeleitung fiir Medien mit Gedächtnis. In Methoden und Verfahren der Mathematischen Physik, Eds Brosowsk, B.. Martensen, E.. 16, 6980 (Mannheim: Bibl. Institut, 1976).Google Scholar
16Lions, J. L. and Magenes, E.. Non-homogeneous boundary value problems and applications I (Berlin: Springer, 1972).Google Scholar
17Meixner, J.. On the linear theory of heat conduction. Arch. Rational Mech. Anal. 39 (1970), 108130.CrossRefGoogle Scholar
18Nachlinger, R. R. and Wheeler, L.. A uniqueness theorem for rigid heat conductors with memory. Quart. Appl. Math. 31 (1973), 267273.CrossRefGoogle Scholar
19Nunziato, J. W.. On heat conduction in materials with memory. Quart. Appl. Math. 29 (1971), 187204.CrossRefGoogle Scholar
20Nunziato, J. W.. On uniqueness in the linear theory of heat conduction with finite wave speeds. SIAM J. Appl. Math. 25 (1973), 14.CrossRefGoogle Scholar
21Payne, L. E.. Some general remarks on improperly posed problems for partial differential equations. In Symposium on Non-Well-Posed Problems and Logarithmic Convexity, Ed. Knops, R. J.. Lecture Notes in Mathematics 316 (Berlin: Springer, 1973).CrossRefGoogle Scholar