Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T07:19:20.891Z Has data issue: false hasContentIssue false

On interpolation of strictly (co-)singular linear operators

Published online by Cambridge University Press:  14 November 2011

O. J. Beucher
Affiliation:
Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-6750 Kaiserslautern, Federal Republic of Germany

Synopsis

We show that the property of linear operators to be in the surjective hull (injective hull) of the ideal of strictly singular (strictly cosingular) operators between Banach spaces is an interpolation property with respect to the real interpolation method with parameters 0 < ủ < 1 and < p < ℞.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Beauzamy, B.. Espaces d'Interpolation Reels: Topologie et Geometrie. Lecture Notes in Mathematics 666 (Berlin: Springer, 1978).CrossRefGoogle Scholar
2Bergh, J. and Löiström, J.. Interpolation Spaces - An Introduction. Grundlehren der mathematischen Wissenschaften 223 (Berlin: Springer, 1976).CrossRefGoogle Scholar
3Diestel, J.. Sequences and Series in Banach Spaces. Graduate Texts in Mathematics 92 (Berlin: Springer, 1984).CrossRefGoogle Scholar
4Diestel, J.. A survey of results related to the Dunford-Pettis property. Contemp. Math. 2 (1980), 1560.CrossRefGoogle Scholar
5Dulst, D.v.. Reflexive and Superreflexive Spaces. Math. Centre Tracts 102 (Amsterdam, 1978).Google Scholar
6Edmunds, D. E. and Teixeira, M. F.. Interpolation theory and measures of non-compactness. Math. Nachr. 104 (1981), 129135.Google Scholar
7Hayakawa, K.. Interpolation by the real method preserves compactness of operators. J.Math. Soc. Japan 21 (1969), 189199.CrossRefGoogle Scholar
8Kato, T.. Perturbation theory of nullity, deficiency and other quantities of linear operators. J. d' Analyse Math. 6 (1958), 261322.CrossRefGoogle Scholar
9Lions, J. L. and Peetre, J.. Sur une classe d'espaces d'interpolation. Instit. Hautes Etudes Sci. Pupl. Math. 19 (1964), 568.CrossRefGoogle Scholar
10Lindenstrauss, J. and Tzafriri, L.. Classical Banach Spaces I and II. Ergeb. Math. Grenzgeb. (3) 92 (Berlin: Springer-Verlag, 1979).Google Scholar
11Pelczynski, A.. On strictly singular an strictly cosingular operators I and II. Bull. Acad. Polon. 13 (1965), 3141.Google Scholar
12Persson, A.. Compact linear mappings between interpolation spaces. Arkiv Mat. 5 (1964), 215219.CrossRefGoogle Scholar
13Schechter, H.. Quantities related to strictly singular operators. Indiana Univ. Math. J. 21 (1972), 10611071.CrossRefGoogle Scholar
14Weis, L. W.. Uber strikt singuldre und strikt cosingulàre Operatoren in Banachràumen. (Dissertation, Bonn, 1974).Google Scholar
15Weis, L. W.. On the surjective (injective) envelope of strictly (Co-)singular operators. Studia Math. 54 (1976), 285290.CrossRefGoogle Scholar
16Whitley, R. J.. Strictly singular operators and their conjugates. Trans. Amer. Math.Soc. 113 (1964), 252261.CrossRefGoogle Scholar