Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T19:24:48.790Z Has data issue: false hasContentIssue false

On a second numerical index for Banach spaces

Published online by Cambridge University Press:  28 January 2019

Sun Kwang Kim
Affiliation:
Department of Mathematics, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea ([email protected])
Han Ju Lee*
Affiliation:
Department of Mathematics Education, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul04620, Republic of Korea ([email protected])
Miguel Martín
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain ([email protected]; [email protected])
Javier Merí
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain ([email protected]; [email protected])
*
*Corresponding author.

Abstract

We introduce a second numerical index for real Banach spaces with non-trivial Lie algebra, as the best constant of equivalence between the numerical radius and the quotient of the operator norm modulo the Lie algebra. We present a number of examples and results concerning absolute sums, duality, vector-valued function spaces…which show that, in many cases, the behaviour of this second numerical index differs from the one of the classical numerical index. As main results, we prove that Hilbert spaces have second numerical index one and that they are the only spaces with this property among the class of Banach spaces with one-unconditional basis and non-trivial Lie algebra. Besides, an application to the Bishop-Phelps-Bollobás property for the numerical radius is given.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dedicated to Rafael Payá on the occasion of his 60th birthday

References

1Ardalani, M. A.. Numerical index with respect to an operator. Studia Math. 225 (2014), 165171.CrossRefGoogle Scholar
2Avilés, A., Kadets, V., Martín, M., Merí, J. and Shepelska, V.. Slicely countably determined Banach spaces. Trans. Amer. Math. Soc. 362 (2010), 48714900.CrossRefGoogle Scholar
3Bonsall, F. F. and Duncan, J.. Numerical Ranges of operators on normed spaces and of elements of normed algebras. London Math. Soc. Lecture Note Series, vol. 2 (London/ New York: Cambridge University Press, 1971).CrossRefGoogle Scholar
4Bonsall, F. F. and Duncan, J.. Numerical Ranges II. London Math. Soc. Lecture Note Series, vol. 10 (London/New York: Cambridge University Press, 1973).CrossRefGoogle Scholar
5Boyko, K., Kadets, V., Martín, M. and Werner, D.. Numerical index of Banach spaces and duality. Math. Proc. Cambridge Phil. Soc. 142 (2007), 93102.CrossRefGoogle Scholar
6Cabrera, M., Rodríguez Palacios, A.. Non-associative normed algebras, volume 1: the Vidav-Palmer and Gelfand-Naimark Theorems. Encyclopedia of Mathematics and its applications, vol. 154 (Cambridge: Cambridge Univesity Press, 2014).CrossRefGoogle Scholar
7Chica, M., Martín, M. and Merí, J.. Numerical radius of rank-1 operators on Banach spaces. Quart. J. Math. 65 (2014), 89100.CrossRefGoogle Scholar
8Choi, Y. S., García, D., Maestre, M. and Martín, M.. The polynomial numerical index for some complex vector-valued function spaces. Quart. J. Math. 59 (2008), 455474.CrossRefGoogle Scholar
9Duncan, J., McGregor, C. M., Pryce, J. D. and White, A. J.. The numerical index of a normed space. J. London Math. Soc. 2 (1970), 481488.CrossRefGoogle Scholar
10Finet, C., Martín, M. and Payá, R.. Numerical index and renorming. Proc. Amer. Math. Soc. 131 (2003), 871877.CrossRefGoogle Scholar
11Godefroy, G.. Existence and uniqueness of isometric preduals: a survey. Banach space theory (Iowa City, IA, 1987), Contemp. Math., vol. 85, pp. 131193 (Providence, RI: Amer. Math. Soc., 1989).CrossRefGoogle Scholar
12Godefroy, G.. Uniqueness of preduals in spaces of operators. Canad. Math. Bull. 57 (2014), 810813.CrossRefGoogle Scholar
13Guirao, A. J. and Kozhushkina, O.. The Bishop-Phelps-Bollobás property for numerical radius in $\ell _1({\open C})$. Studia Math. 218 (2013), 4154.CrossRefGoogle Scholar
14Harmand, P., Werner, D. and Werner, D.. M-ideals in Banach spaces and Banach algebras Lecture Notes in Math., vol. 1547 (Berlin: Springer-Verlag, 1993).CrossRefGoogle Scholar
15Horn, G.. Characterization of the predual and ideal structure of a JBW*-triple. Math. Scand. 61 (1987), 117133.CrossRefGoogle Scholar
16Kadets, V., Martín, M. and Payá, R.. Recent progress and open questions on the numerical index of Banach spaces. Rev. R. Acad. Cien. Serie A. Mat. 100 (2006), 155182.Google Scholar
17Kim, S. K., Lee, H. J. and Martín, M.. On the Bishop-Phelps-Bollobás property for numerical radius. Abstr. Appl. Anal. 2014 15, Article ID 479208.Google Scholar
18López, G., Martín, M. and Merí, J.. Numerical index of Banach spaces of weakly or weakly-star continuous functions. Rocky Mount. J. Math. 38 (2008), 213223.CrossRefGoogle Scholar
19Martín, M.. The group of isometries of a Banach space and duality. J. Funct. Anal. 255 (2008), 29662976.CrossRefGoogle Scholar
20Martín, M.. On different definitions of numerical range. J. Math. Anal. Appl. 433 (2016), 877886.CrossRefGoogle Scholar
21Martín, M. and Merí, J.. A note on the numerical index of the L p space of dimension two. Linear Mutl. Algebra 57 (2009), 201204.CrossRefGoogle Scholar
22Martín, M. and Payá, R.. Numerical index of vector-valued function spaces. Studia Math. 142 (2000), 269280.CrossRefGoogle Scholar
23Martín, M. and Villena, A.. Numerical index and the Daugavet property for L (μ ,X). Proc. Edinb. Math. Soc. 46 (2003), 415420.CrossRefGoogle Scholar
24Martín, M., Merí, J. and Rodríguez-Palacios, A.. Finite-dimensional Banach spaces with numerical index zero. Indiana University Math. J. 53 (2004), 12791289.CrossRefGoogle Scholar
25Martín, M., Merí, J., Popov, M. and Randrianantoanina, B..Numerical index of absolute sums of Banach spaces. J. Math. Anal. Appl. 375 (2011), 207222.CrossRefGoogle Scholar
26Mena, J. F., Payá, R., Rodríguez-Palacios, A. and Yost, D.. Absolutely proximinal subspaces of Banach spaces. J. Aprox. Theory 65 (1991), 4672.CrossRefGoogle Scholar
27Payá, R.. Numerical range of operators and structure in Banach spaces. Quart. J. Math. Oxford 33 (1982), 357364.CrossRefGoogle Scholar
28Pfitzner, H.. Separable L-embedded Banach spaces are unique preduals. Bull. London Math. Soc. 39 (2007), 10391044.CrossRefGoogle Scholar
29Rosenthal, H.. Functional hilbertian sums. Pac. J. Math. 124 (1986), 417467.CrossRefGoogle Scholar