Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T22:24:07.027Z Has data issue: false hasContentIssue false

Nontrivial full bounded solutions of time-periodic semilinear parabolic PDEs

Published online by Cambridge University Press:  14 November 2011

Marian Mrozek
Affiliation:
Uniwersytet Jagielloński, Katedra Informatyki, ul. Kopernika 27, 31-501 Kraków, Poland
Krzysztof P. Rybakowski
Affiliation:
Albert-Ludwigs-Universität, Institut für Angewandte Mathematik, Hermann-Herder Straße 10, 7800 Freiburg, West Germany

Synopsis

Consider the semilinear evolution equation

(P) u + Au = f(t,u)

where A is a sectorial operator on a Banach space and f is ω-periodic in t. Using a time-discrete Conley index developed in a previous paper [6], we prove a few existence results on bounded solutions of (P) defined for all t ∊ R. More specific results are given for time-periodic scalar parabolic equations.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hale, J.. Theory of Functional Differential Equations. (Berlin: Springer, 1977).Google Scholar
2Henry, D.. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840 (Berlin: Springer, 1981).Google Scholar
3Mané, R.. On the dimension of the compact invariant sets of certain nonlinear maps. In Lecture Notes in Mathematics 898 230242 (Berlin: Springer, 1981).Google Scholar
4Mallet-Paret, J.. Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. J. ifferential Equations 22 (1976), 331348.Google Scholar
5Mrozek, M.. Leray functor and the cohomological Conley index for discrete time dynamical systems. Trans. Amer. Math. Soc. 318 (1990), 149178.Google Scholar
6Mrozek, M. and Rybakowski, K. P.. A cohomological Conley index for maps on metric spaces, J. Differential Equations (to appear).Google Scholar
7Rybakowski, K. P.. On the homotopy index for infinite dimensional semi-flows. Trans. Amer. Math. Soc. 269 (1982), 351382.CrossRefGoogle Scholar
8Rybakowski, K. P.. The Morse index, repeller–attractor pairs and the connection index for semiflows on noncompact spaces. J. Differential Equations 47 (1983), 6698.CrossRefGoogle Scholar
9Rybakowski, K. P.. The Homotopy Index and Partial Differential Equations. (Berlin: Springer, 1987).Google Scholar