Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T15:44:58.361Z Has data issue: false hasContentIssue false

Non-existence of eigenvalues of Dirac operators

Published online by Cambridge University Press:  14 November 2011

Hubert Kalf
Affiliation:
Fachbereich Mathematik, Technische Hochschule Darmstadt, 6100 Darmstadt, Schlossgartenstrasse 7, B.R.D.

Synopsis

Absence of non-trivial square integrable solutions of the Dirac equation

for values of λ in half-rays is proved under local conditions on q, curl b, and the radial derivative of q. The Coulomb potential is admitted. Another result does not contain any growth condition on the radial derivative of q. It states that there are no solutions of integrable square other than the trivial solution if λ ε ℝ\ [−1, 1] and

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ikebe, T. and Uchiyama, J.. On the asymptotic behaviour of eigenfunctions of second-order elliptic operators. J. Math. Kyoto Univ. 11 (1971), 425448.Google Scholar
2Kalf, H.. The virial theorem in relativistic quantum mechanics. J. Functional Analysis 21 (1976), 389396.CrossRefGoogle Scholar
3Kalf, H.. Non-existence of eigenvalues of Schrödinger operators. Proc. Roy. Soc. Edinburgh Sect. A 79 (1977), 157172.CrossRefGoogle Scholar
4Reed, M. and Simon, B.. Methods of modern mathematical physics IV: Analysis of operators (New York: Academic Press, 1978).Google Scholar
5Roze, S. N.. On the spectrum of the Dirac operator. Theoret. and Math. Phys. 2 (1970), 275279.CrossRefGoogle Scholar
6Schechter, M. and Simon, B.. Unique continuation for Schrödinger operators with unbounded potentials. J. Math. Anal. Appl. 77 (1980), 482492.CrossRefGoogle Scholar
7Thompson, M.. The absence of embedded eigenvalues in the continuous spectrum for perturbed Dirac operators. Boll. Un. Mat. Ital. A 13 (1976), 576585.Google Scholar
8Wienholtz, E.. Zur Regularität schwacher Lösungen für elliptische Systeme partieller Differentialoperatoren.Math. Z. 83 (1964), 85118.CrossRefGoogle Scholar