Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T16:58:57.469Z Has data issue: false hasContentIssue false

A lower bound for electrostatic capacity in the plane

Published online by Cambridge University Press:  14 November 2011

L. E. Fraenkel
Affiliation:
Mathematics Division, University of Sussex

Synopsis

This note presents a lower bound, in terms of the diameter ratio of the inner and outer conductors, for the electrostatic capacity of certain two-dimensional condensers. We use double Steiner symmetrization to prove that the minimizing condenser consists of a line segment placed symmetrically within a circle; the capacity of this condenser is known explicitly.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Berger, M. S. and Fraenkel, L. E.. Nonlinear desingularization in certain free-boundary problems. Comm. Math. Phys. 77 (1980), 149172.CrossRefGoogle Scholar
2Eggleston, H. G.. Convexity (Cambridge: University Press, 1969).Google Scholar
3Essen, M. R.. The cos πλ Theorem. Lecture Notes in Mathematics 467 (Berlin: Springer, 1975).Google Scholar
4Garnett, J.. Analytic capacity and measure. Lecture Notes in Mathematics 297 (Berlin: Springer, 1972).Google Scholar
5Hayman, W. K.. Multivalent functions (Cambridge: University Press, 1958).Google Scholar
6Landkof, N. S.. Foundations of modem potential theory (Berlin: Springer, 1972).CrossRefGoogle Scholar
7Lewy, H. and Stampacchia, G.. On the regularity of the solution of a variational inequality. Comm. Pure Appl. Math. 22 (1969), 53188.CrossRefGoogle Scholar
8Maz'ja, V. G.. On (p,l)-capacity, imbedding theorems, and the spectrum of a selfadjoint elliptic operator. Math. USSR-Izv. 7 (1973), 357387.CrossRefGoogle Scholar
9Payne, L. E.. Isoperimetric inequalities and their applications. SIAM Rev. 9 (1967), 453488.CrossRefGoogle Scholar
10Pólya, G. and Szegö, G.. Inequalities for the capacity of a condenser. Amer. J. Math. 67 (1945), 132.CrossRefGoogle Scholar
11Pólya, G. and Szegö, G.. Isoperimetric inequalities in mathematical physics (Princeton: University Press, 1951).Google Scholar
12Sarvas, J.. Symmetrization of condensers in n-space. Ann. Acad. Sci. Fenn. Ser. AI 522 (1972).Google Scholar
13Stampacchia, G.. Variational inequalities. Proc. NATO Advanced Study Inst., Theory and applications of monotone operators (Gubbio: Ediz. Oderisi, 1969).Google Scholar
14Wendt, G.. Article in Encyclopedia of Physics (ed. Flügge, S.), vol. XVI, Electric fields and waves (Berlin: Springer, 1958).Google Scholar