Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T08:07:45.407Z Has data issue: false hasContentIssue false

Limit analysis for a class of nonconvex problems

Published online by Cambridge University Press:  14 November 2011

Giuseppe Buttazzo
Affiliation:
Istituto di Matematiche Applicate, Via Bonanno, 25 B, 56126 Pisa, Italy
Loris Faina
Affiliation:
S.I.S.S.A., Strada Costiera, 11, 34014 Trieste, Italy

Synopsis

The problem

is considered, where X is a normed space, F: X →] –∞, + ∞] is a (possibly non-convex) functional and L ∈ X'. We look for the values of γy for which the infimum above is attained. Applications to nonconvex functionals denned on measures and on the BV space are given.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ambrosio, L.. Existence theory for a new class of variational problems. Arch. Rational Mech. Anal. 111 (1990), 291322.CrossRefGoogle Scholar
2Buttazzo, G., Su una definizione generale dei Γ-limiti. Boll. Un. Mat. Ital. B (5) 14 (1977), 722744.Google Scholar
3Buttazzo, G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variation, Pitman Research Notes in Mathematics 207 (Harlow: Longman, 1989).Google Scholar
4Bouchitté, G. and Buttazzo, G.. New lower semicontinuity results for nonconvex functionals defined on measures. Nonlinear Anal. 15 (1990), 679692.CrossRefGoogle Scholar
5Bouchitt, G.é and Buttazzo, G.. Integral representation of nonconvex functionals defined on measures, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 101117.CrossRefGoogle Scholar
6Bouchitt, G.é and Buttazzo, G.. Relaxation for a class of nonconvex functionals defined on measures Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear).Google Scholar
7Baiocchi, C., Buttazzo, G., Gastaldi, F. and Tomarelli, F.. General existence theorems for unilateral problems in Continuum Mechanics. Arch. Rational Mech. Anal. 100 (1988), 149189.CrossRefGoogle Scholar
8Bourbaki, N.. Elements de Mathématique-Espaces vectoriels Topologiques, Chaps. 1 and 2, Act. Sci. Ind. 1189 (Paris: Hermann, 1966).Google Scholar
9Bouchitté, G. and Suquet, P.. Equi-coercivity of variational problems: The role of recession functions (to appear).Google Scholar
10De Giorgi, E.. Γ-convergenza e G-convergenza. Boll. Un. Mat. Ital. A (5) 14 (1977) 213224.Google Scholar
11De Giorgi, E. and Franzoni, T.. Su un tipo di convergenza variazionale. atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), 842850.Google Scholar
12Hille, E. and Phillips, R. S.. Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications (Providence, R.I.: American Mathematical Society, 1957).Google Scholar
13Rockafellar, R. T.. Convex Analysis (Princeton: Princeton University Press, 1970).CrossRefGoogle Scholar
14Goffman, C. and Serrin, J., Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964) 159178.CrossRefGoogle Scholar