Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T09:23:08.071Z Has data issue: false hasContentIssue false

IX.—Possible Applications of Coincidence Counter Techniques in Optical Intensity Correlation Studies*

Published online by Cambridge University Press:  14 February 2012

R. M. Sillitto
Affiliation:
Department of Natural Philosophy, University of Edinburgh

Synopsis

Methods which are widely used in the mathematical analysis of random noise are used here to obtain expressions for the coincidence-counting rates which could be obtained in studies of the intensity correlations between plane-polarized, parallel beams of nearly monochromatic light. It is shown that, with presently available circuit techniques, delayed coincidence measurements could provide information about the breadths of lines radiated by atomic beam light sources, and in prompt coincidence experiments it should be possible to observe interference between beams of incoherent light from sources whose line widths are comparable with those of the Hg198 electrodeless discharge.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Barger, R. L., and Kessler, K. G., 1960. J. Opt. Soc. Amer., 50, 651656.CrossRefGoogle Scholar
Bay, Z., 1956. Inst. Radio Engrs. Trans. Nuclear Set., pp. 1228.Google Scholar
Bay, Z., and Farago, P. S., 1963. Proc. Roy. Soc. Edin., A, 66, 111115.Google Scholar
Born, M., and Wolf, E., 1959. Principles of Optics, Chapter 7. Pergamon Press.Google Scholar
Brannen, E., Ferguson, H. I. S., and Wehlau, W., 1958. Canad. J. Phys., 36, 871874.CrossRefGoogle Scholar
Cernigoi, C, Gabrielli, I., and Iernetti, G., 1960. Nuclear Instrum. Meth., 9, 303314.CrossRefGoogle Scholar
Davenport, W. B., and Root, W. L., 1958. An Introduction to the Theory of Random Signals and Noise, Chapter 4. McGraw Hill.Google Scholar
Fano, U., 1961. Amer.J. Phys., 29, 539545.CrossRefGoogle Scholar
Forrester, A. T., 1961. J. Opt. Soc. Amer., 51, 253259.CrossRefGoogle Scholar
Forrester, A. T., Gudmundsen, R. A., and Johnson, P. O., 1955. Phys. Rev., 99, 16911700.CrossRefGoogle Scholar
Franzini, P., 1961. Rev. Sci. Instrum., 32, 12221223.CrossRefGoogle Scholar
Gabor, D., 1961. Progr. Optics, I, III-153.Google Scholar
Givens, M. P., 1961. J. Opt. Soc. Amer., 51 10301033.CrossRefGoogle Scholar
Hanbury Brown, R., and Twiss, R. Q., 1957. Proc. Roy. Soc, A, 242, 300324.Google Scholar
Hanbury Brown, R., 1958. Proc. Roy. Soc, A, 243, 291319.Google Scholar
Henebry, W. M., 1961. Rev. Sci. Instrum., 32, 11981203.CrossRefGoogle Scholar
Janossy, L., 1957. Nuovo Cim., 6, 111124.CrossRefGoogle Scholar
Janossy, L., 1959. Nuovo Cim., 12, 369384.CrossRefGoogle Scholar
Lawson, J. L., and Uhlenbeck, G. E., 1950. Threshold Signals, Chapter 3. McGraw Hill.Google Scholar
Mandel, L., 1961a. J. Opt. Soc. Amer., 51, 797798.CrossRefGoogle Scholar
Mandel, L., 1961b. J. Opt. Soc Amer., 51, 13421350.CrossRefGoogle Scholar
Mandel, L., 1962. Symposium on Electromagnetic Theory and Antennas. Copenhagen, June 1962.Google Scholar
Mandel, L., and Wolf, E., 1961. Phys. Rev., 124, 16961702.Google Scholar
Meissner, K. W., and Kaufman, V., 1959. J. Opt. Soc. Amer., 49, 434438.CrossRefGoogle Scholar
Purcell, E. M., 1956. Nature, Lond, 178, 14491450.CrossRefGoogle Scholar
Rebka, G. A., and Pound, R. V., 1957. Nature, Lond., 180, 10351036.CrossRefGoogle Scholar
Terrien, J., 1959. Nat. Phys. Lab. Symposium on Interferometry, published by H.M.S.O., 1960; pp. 435456.Google Scholar
Twiss, R. Q., and Little, A. G., 1959. Aust.J. Phys., 12, 7793.CrossRefGoogle Scholar
Twiss, R. Q., Little, A. G., and Hanbury Brown, R., 1957. Nature, Lond., 180, 324326.CrossRefGoogle Scholar
Williams, W. E., 1930. Applications of Interferometry, Chapter 1. Methuen.Google Scholar