Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T12:01:52.518Z Has data issue: false hasContentIssue false

Inverse-monotone nonlinear differential operators of the second order

Published online by Cambridge University Press:  14 November 2011

Johann Schröder
Affiliation:
Mathematisches Institut, Universität zu Köln

Synopsis

This paper provides a survey on a class of methods to obtain sufficient conditions for the inversemonotonicity of second-order differential operators. Pointwise differential inequalities as well as weak differential inequalities are treated. In particular, the theory yields results on the relation between inverse-mo no tone operators and monotone definite operators, i.e. monotone operators in the Browder–Minty sense. This presentation is restricted to ordinary differential operators. Most methods explained here can also be applied to elliptic-parabolic partial differential operators in essentially the same way.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, E. and Spreuer, H.Uniqueness and stability for boundary value problems with weakly coupled systems of non-linear integro-differential equations and applications to chemical reactors. J. Math. Anal. Appl. 49 (1975), 393410.CrossRefGoogle Scholar
2Beckenback, E. F. and Bellman, R.Inequalities (Berlin: Springer, 1961).CrossRefGoogle Scholar
3Bellman, R.On the non-negativity of Green's functions. Boll. Un. Math. Ital. 12 (1957),411413.Google Scholar
4Browder, F. E.Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 69 (1963), 862874.CrossRefGoogle Scholar
5Chandra, J. and Davis, P. Wm.A monotone method for quasilinear boundary value problems. Arch. Rational Mech. Anal. 54 (1974), 257266.CrossRefGoogle Scholar
6Cohen, D. S.Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor theory. SIAM J. Appl. Math. 20 (1971), 112.CrossRefGoogle Scholar
7Cohen, D. S. and Laetsch, T. W.Nonlinear boundary value problems suggested by chemical reactor theory. J. Differential Equations 7 (1970), 217226.CrossRefGoogle Scholar
8Collatz, L.Aufgaben monotoner Art. Arch. Math. 3 (1952), 365376.CrossRefGoogle Scholar
9Collatz, L.The numerical treatment of differential equations (Berlin: Springer, 1960).Google Scholar
10Douglas, J., Dupont, T. and Serrin, J.Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form. Arch. Rational Mech. Anal. 42 (1971), 157168.CrossRefGoogle Scholar
11Küpper, T. Einschlieβungsaussagen bei gewöhnlichen Differentialoperatoren (Köln: Univ. Dissertation, 1974).Google Scholar
12Lakshmikantham, V. and Leela, S.Differential and integral inequalities I (New York: Academic Press, 1969).Google Scholar
13Lions, J. L.Problèmes aux limites dans les équations aux derivees partielles (Montréal: Univ. Press, 1965).Google Scholar
14Littman, W.A strong maximum principle for weakly L-subharmonic functions. J. Math. Mech. 8 (1959), 761770.Google Scholar
15Littman, W.Generalized subharmonic functions: monotonic approximations and an improved maximum principle. Ann. Scuola Norm. Sup. Pisa. 17 (1963), 207222.Google Scholar
16Luss, D.Sufficient conditions for uniqueness of the steady state solutions in distributed parameter systems. Chem. Engrg Sci. 23 (1968), 12491255.CrossRefGoogle Scholar
17Markus, L. and Amundson, N. R.Nonlinear boundary value problems arising in chemical reactor theory. J. Differential Equations 4 (1968), 102113.CrossRefGoogle Scholar
18McNabb, A.Strong comparison theorems for elliptic equations of second order. J. Math. Mech. 10 (1961), 431440.Google Scholar
19Meyn, K. H. and Werner, B. Randmaximum-und Monotonierprinzipien für eiliptische Randwertaufgaben mit Gebietszerlegung Hamburg Univ., Math. Inst., preprint (1976).Google Scholar
20Minty, G. J.Monotone (nonlinear) operators in hilbert space. Duke Math. J. 29 (1962), 341346.CrossRefGoogle Scholar
21Murray, J. D.A simple method for obtaining approximate solutions for a class of diffusionkinetics enzyme problems, I. General class and illustrative examples. Math. Biosci. 2 (1968), 379411.CrossRefGoogle Scholar
22Protter, M. H. and Weinberger, H. I.Maximum principles in differential equations (Englewood Cliffs: Prentice Hall, 1967).Google Scholar
23Redheffer, R. M.An extension of certain maximum principles. Monatsh. Math. 66 (1962), 3242.CrossRefGoogle Scholar
24Redheffer, R. M.Eindeutigkeitssätze bei nichtlinearen Differentialgleichungen. J. Reine Angew. Math. 211 (1962), 7077.CrossRefGoogle Scholar
25Redheffer, R. M. Fehlerabschatzung bei nichtlinearen Differentialgleichungen mit Hilfe linearer Differentialungleichungen, to appear.Google Scholar
26Sattinger, D. H.Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 21 (1972), 9791000.CrossRefGoogle Scholar
27Schröder, J.Monotonie-Eigenschaften bei Differentialgleichungen. Arch. Rational Mech. Anal. 14 (1963), 3860.CrossRefGoogle Scholar
28Schroder, J.Operator-Ungleichungen und ihre numerische Anwendung bei Randwertaufgaben. Numer. Math. 9 (1966), 149162.CrossRefGoogle Scholar
29Schröder, J. Monotonie-Aussagen bei quasilinearen elliptischen Differentialgleichungen und anderen Problemen, 341361. In Numerische Mathematik, Differentialgleichungen, Approximationstheorie Ed. Collatz, L. and Meinardus, G. (Basel: Birkhauser, 1968).CrossRefGoogle Scholar
30Schröder, J.Upper and lower bounds for solutions of generalized two-point boundary value problems. Numer. Math. 23 (1975), 433457.CrossRefGoogle Scholar
31Schröder, J. Inverse-monotone ordinary differential operators of the second order. Kbln Univ. Math. Inst. Report 76–8 (1976).Google Scholar
32Schröder, J.Inclusion statements for operator equations by a continuity principle. Manuscripta Math. 21 (1977), 135171.CrossRefGoogle Scholar
33Schröder, J.Operator inequalities. (New York: Academic Press, to appear).Google Scholar
34Serrin, J.On the strong maximum principle for quasi-linear second order differential inequalities. J. Functional Analysis 5 (1970), 184193.CrossRefGoogle Scholar
35Simader, C. G.On Dirichlet's boundary value probhems (Berlin: Springer, 1972).CrossRefGoogle Scholar
36Stampacchia, G.Equations elliptiques du second ordre a coefficients discontinues (Montreal: Univ. Press, 1966).Google Scholar
37Steinmetz, W. J.On a nonlinear singular perturbation boundary value problem in gas lubrication theory. SIAM J. Appl. Math. 26 (1964), 816827.CrossRefGoogle Scholar
38Stieltjes, T. J.Sur les racines de Xn, = 0. Acta Math. 9 (1887), 385400.CrossRefGoogle Scholar
39Szarski, J.Differential inequalities (Warsaw: Polish Academic Publishers, 1965)Google Scholar
40Trudinger, N.On Harnack type inequalities and their applications to quasilinear elliptic equations. Comm. Pure Appl. Math. 20 (1967), 721747.CrossRefGoogle Scholar
41Walter, W.Differential and integral inequalities (Berlin: Springer, 1970).CrossRefGoogle Scholar